Задание 13 ЕГЭ по математике (профильной) 2023: теория и практика

ЕГЭ

Алгоритм выполнения

  1. Записываем ф-лу для вычисления объема цилиндра.
  2. Вводим обозначения для радиуса основания и высоты 1-го цилиндра. Выражаем подобным образом аналогичные параметры 2-го цилиндра.
  3. Формируем формулы для объема 1-го и 2-го цилиндров.
  4. Вычисляем отношение объемов.

Алгоритм выполнения:

  1. Записать формулу, для вычисления объема правильной четырехугольной призмы.
  2. Записать в общем виде формулу для нахождения объема в первом и втором случае.
  3. Найти отношение объемов.
  4. Преобразовать полученное выражение с учетом соотношения измерений первой и второй призмы.
  5. Сократить получившуюся дробь.

Вариант 13мб1

[su_note note_color=”#defae6″]

Вода в сосуде цилиндрической формы находится на уровне h = 80 см. На каком уровне окажется вода, если ее перелить в другой цилиндрический сосуд, у которого радиус основания в 4 раза больше, чем у данного? Ответ дайте в сантиметрах.

[/su_note]

Вариант 13мб10

[su_note note_color=”#defae6″]

В сосуде, имеющем форму конуса, уровень жидкости достигает ½ высоты. Объем сосуда 1600 мл. Чему равен объем налитой жидкости? Ответ дайте в миллилитрах.

C:UsersDDD3~1AppDataLocalTempRar$DRa5280.4767Рисунки к Базе №136.jpg

[/su_note]

Вариант 13мб11

[su_note note_color=”#defae6″]

Даны два шара с радиусами 4 и 1. Во сколько раз объем большего шара больше объема меньшего?

C:UsersDDD3~1AppDataLocalTempRar$DRa5280.5777Рисунки к Базе №137.jpg

[/su_note]

Вариант 13мб12

[su_note note_color=”#defae6″]

Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 4 и 18, а второго – 2 и 3. Во сколько раз площадь боковой поверхности первого цилиндра больше площади боковой поверхности второго?

C:UsersDDD3~1AppDataLocalTempRar$DRa5280.7107Рисунки к Базе №138.jpg

[/su_note]

Вариант 13мб13

[su_note note_color=”#defae6″]

Однородный шар диаметром 3 см весит 162 грамма. Сколько граммов весит шар диаметром 2 см, изготовленный из того же материала?

C:UsersDDD3~1AppDataLocalTempRar$DRa5280.13182Рисунки к Базе №139.jpg

[/su_note]

Вариант 13мб14

[su_note note_color=”#defae6″]

В бак, имеющий форму правильной четырехугольной призмы со стороной основания, равной 40 см, налита жидкость. Чтобы измерить объем детали сложной формы, ее полностью погружают в эту жидкость. Найдите объем детали, если после ее погружения уровень жидкости в баке поднялся на 10 см. Ответ дайте в кубических сантиметрах.

C:UsersDDD3~1AppDataLocalTempRar$DRa5280.14234Рисунки к Базе №1310.jpg

[/su_note]

Вариант 13мб2

[su_note note_color=”#defae6″]

Даны две коробки, имеющие форму правильной четырёхугольной призмы. Первая коробка в четыре с половиной раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой коробки меньше объёма второй?

image001

[/su_note]

Вариант 13мб3

[su_note note_color=”#defae6″]

Даны две коробки, имеющие форму правильной четырёхугольной призмы. Первая коробка в полтора раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой коробки меньше объёма второй?

image001

[/su_note]

Вариант 13мб4

[su_note note_color=”#defae6″]

От деревянного кубика отпилили все его вершины (см. рис.). Сколько граней у получившегося многогранника (невидимые ребра на рисунке не изображены)?ЕГЭ по математике задание №13

[/su_note]

Сначала вспомним сколько всего граней и вершин у куба: шесть граней и восемь вершин. Теперь на месте каждой вершины образуется новая грань после отпила, значит у модифицированного в задании куба шесть родных граней и восемь новых (после отпила). Итого получаем: 6 8 = 14 граней.

Ответ: 14.

Если бы нас спросили, а сколько вершин у нового “куба”. Очевидно, если вместо одной становится три, а их всего восемь, то получаем: 8 • 3 = 24

Вариант 13мб5

[su_note note_color=”#defae6″]

Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 2 и 6, а второго – 6 и 4. Во сколько раз объем второго цилиндра больше объема первого?C:UsersDDD3~1AppDataLocalTempRar$DRa5280.49082Рисунки к Базе №131.jpg

[/su_note]

Вариант 13мб6

[su_note note_color=”#defae6″]

В бак, имеющий форму прямой призмы, налито 5 л воды. После полного погружения в воду детали уровень воды в баке поднялся в 1,4 раза. Найдите объем детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре 1000 кубических сантиметров.C:UsersDDD3~1AppDataLocalTempRar$DRa5280.486Рисунки к Базе №132.jpg

[/su_note]

Вариант 13мб7

[su_note note_color=”#defae6″]

Вода в сосуде цилиндрической формы находится на уровне h=80 см. На каком уровне окажется вода, если ее перелить в другой цилиндрический сосуд, у которого радиус основания вдвое больше, чем у первого? Ответ дайте в сантиметрах.C:UsersDDD3~1AppDataLocalTempRar$DRa5280.1444Рисунки к Базе №133.jpg

[/su_note]

Вариант 13мб8

[su_note note_color=”#defae6″]

От деревянной правильной треугольной призмы отпилили все ее вершины (см. рис.). Сколько вершин у получившегося многогранника (невидимые ребра на рисунке не изображены)?

C:UsersDDD3~1AppDataLocalTempRar$DRa5280.2439Рисунки к Базе №134.jpg

[/su_note]

Вариант 13мб9

[su_note note_color=”#defae6″]

Даны две коробки, имеющие форму правильной четырехугольной призмы, стоящей на основании. Первая коробка в четыре с половиной раза ниже второй, а вторая второе уже первой. Во сколько раз объем первой коробки больше объема второй?

C:UsersDDD3~1AppDataLocalTempRar$DRa5280.3628Рисунки к Базе №135.jpg

[/su_note]

Задание 13 егэ по математике (профильной) 2023: теория и практика

а) Докажем, что плоскости $SBC$ и $KEF$ параллельны.

Введём прямоугольную систему координат, учитывая, что в основании правильной пирамиды квадрат $ABCD$ и угол между диагоналями квадрата прямой .

1. Найдём координаты точек $S, B, C , K , E, F$. В прямоугольном треугольнике $SOA$ по теореме Пифагора $OA^2 = SA^2 — SO^2, OA = √{12^2 — 4^2} = 8√2. OC = OB = OD = OA = 8√2$, тогда сторона квадрата $AB = {OA}/{sin 45°} = {8√2}/{{1}/{√2}} = 16, AE = AB — BE = 16 — 12 = 4$.

Проведём $KN ‖ SO, SO ⊥ (ABC)$, тогда $KN ⊥ (ABC)$ и $KN ⊥ OA, △SAO ∼ △KAN$ по первому признаку подобия $(∠SOA = ∠KNA = 90°, ∠A$ — общий) ${AS}/{AK} = {SO}/{KN}, {12}/{3} = {4}/{KN}, KN = 1$.

В прямоугольном треугольнике $ANK$ по теореме Пифагора $AN^2 = AK^2 — KN^2, AN = √{3^2 — 1^2} = 2√2$, тогда $ON = OA — AN = 8√2 — 2√2 = 6√2. EN$ — проекция $KE$ на плоскость $ABC$, значит $△ANE$ прямоугольный и равнобедренный $EN = AN = 2√2$.

Получим $S(0; 0; 4), B(0; -8√2; 0), C (-8√2; 0; 0), K (6√2; 0; 1), E(6√2; -2√2; 0), F (-2√2; 6√2; 0)$.

2. Докажем, что векторы нормали к плоскостям $SBC$ и $KEF$ коллинеарны. Для плоскости $SBC$, вектор нормали ${n_1}↖{→}(a_1; b_1; c_1)$ перпендикулярен к обеим прямым $SB$ и $SC$, поэтому он должен быть перпендикулярен к векторам ${SB}↖{→}(0; -8√2; -4)$ и ${SC}↖{→}(-8√2; 0; -4)$.

Получим систему ${table {n_1}↖{→} · {SB}↖{→} = 0; {n_1}↖{→} ·{SC}↖{→} = 0;$ ${table · a_1 — 8√2 · b_1 — 4c_1 = 0; -8√2a_1 0 · b_1 — 4 · c_1 = 0;$ ${table-2√2b_1 — c_1 = 0; -2√2a_1 — c_1 = 0;$

Пусть $c_1 = -1$, тогда система примет вид ${table-2√2b_1 1 = 0; -2√2a_1 1 = 0;$

Её решение $a_1 = {√2}/{4}; b_1 = {√2}/{4}$.

${n_1}↖{→}({√2}/{4}; {√2}/{4}; -1)$ — вектор нормали плоскости $SBC$ .

Для плоскости $KEF$, вектор нормали ${n_2}↖{→}(a_2; b_2; c_2)$ перпендикулярен к обеим прямым $KE$ и $KF$, поэтому он должен быть перпендикулярен к векторам ${KE}↖{→}(0; -2√2; -1)$ и ${KF}↖{→}(-8√2; 6√2; -1)$.

Получим систему ${table {n_2}↖{→} · {KE}↖{→} = 0; {n_2}↖{→} · {KF}↖{→} = 0;$ ${table · a_2 — 2√2 · b_2 — 1 · c_2 = 0; -8√2a_2 6√2 · b_2 — 1 · c_2 = 0;$ ${table-2√2b_2 — c_2 = 0; -8√2a_2 6√2b_2 — c_2 = 0$.

Пусть $c_2 = -1$, тогда система примет вид ${table-2√2b_2 1 = 0; 8√2a_2 6√2b_2 1 = 0;$

Её решение $a_2 = {√2}/{4}; b_2 = {√2}/{4}$.${n_2}↖{→}({√2}/{4}; {√2}/{4}; -1)$ — вектор нормали плоскости $KEF$.

Векторы ${n_1}↖{→}$ и ${n_2}↖{→}$ равны, значит коллинеарны, следовательно плоскости $SBC$ и $KEF$ параллельны.

б) Искомый объём $V = {1}/{3}S · h$, где $S$ — площадь треугольника $SBC$, а высота пирамиды $h$ — это расстояние от точки $K$ до плоскости $SBC$.

1. $S = {1}/{2}SB · SC · sin α$, где $α$ — угол между прямыми $SB$ и $SC$. $cos α ={{SB}↖{→} · {SC}↖{→}}/{|{SB}↖{→}| · |{SC}↖{→}|} = {0 · (-8√2) (-8√2) · 0 (-4)(-4)}/{12 · 12} = {16}/{144} = {1}/{9}$.

$sin α = √{1 — cos^2α} = √{1 — {1}/{81}} = {4√5}/{9} · S = {1}/{2} · 12 · 12 · {4√5}/{9} = 32√5$.

2. Чтобы найти $h$ необходимо найти уравнение плоскости $SBC$. Оно имеет вид $ax by cz d = 0$, где ${n}↖{→}(a; b; c)$ — вектор нормали этой плоскости. Согласно пункту а), один из векторов нормали ${n_1}↖{→}({√2}/{4}; {√2}/{4}; -1)$. Значит, уравнение имеет вид ${√2}/{4}x {√2}/{4}y — z d = 0$. Чтобы найти значение $d$ подставим координаты точки $S(0; 0; 4)$ в это уравнение, получим $-4 d = 0, d = 4$, тогда ${√2}/{4}x {√2}/{4}y — z 4 = 0$ — уравнение плоскости $SBC$. Расстояние от точки $K(6√2; 0; 1)$ до плоскости $SBC$

$h = {|ax_0 by_0 z_0 d|}/{√{a_2 b_2 z_2}} ={|{√2}/{4} · 6√2 {√2}/{4} · 0 (-1) · 1 4|}/{√{({√2}/{4})^2 ({√2}/{4})^2 (-1)^2}} = {12√5}/{5}$, где $x_0, y_0, z_0$ — координаты точки $K$.

3. $V = {1}/{3} · 32√5 · {12√5}/{5} = 128$.

Решение:

Запишем формулу объема цилиндра.

Если вы забыли формулу объема цилиндра, то напомню, как ее можно легко вывести. Объем простых фигур, таких как куб и цилиндр, можно вычислить умножив площадь основания на высоту. Площадь основания в случае с цилиндром равна площади окружности, которую, вы, наверняка помните: π • r2.

Следовательно, объем цилиндра равен π • r2 • h

Подставим значения для цилиндра с жидкостью в первом и во втором случае.

V

1

= π r

1212

= π r

222

Объем жидкости не изменялся, следовательно, можно приравнять объемы.

V1 = V2

Левые части равны, значит можно приравнять и правые.

π r12 h1 = π r22 h2


Полученное уравнение решим относительно второй высоты h

2

h2 – неизвестный множитель. Чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

h2 =( π r12 h1)/ π r22


По условию площадь основания стала в 4 раза больше, то есть r

2

= 4 r

1

.

Подставим r

2

= 4 r

1

в выражение для h

1.

Получим: h

2

=( π r

121

)/ π (4 r

12

Полученную дробь

сократим

на π, получим h

2

=( r

121

)/ 16 r

12

Полученную дробь сократим на r

1

, получим h

2

= h

1

/ 16.

Подставим известные данные: h

2

= 80/ 16 = 5 см.

Ответ: 5.

Оцените статью
ЕГЭ Live