Что изменилось в 2022 в егэ по профильной математике
И начнем мы с инноваций, которые уже официально утверждены ФИПИ.
Изменения, связанные с заданиями:
Ура, ликуйте, выпускники, ведь количество заданий уменьшилось. Вариант ЕГЭ по профилю будет состоять из 18 заданий. Правда, изменения коснулись самых любимых одиннадцатиклассниками номеров. Так, например, никогда больше в КИМах мы не увидим первого номера.
Резко позиции сдал номер 9, ставший в обновленной версии базовым 5. Кстати, раньше это задание имело маркировку повышенной сложности. С 8 на 6 перешла стереометрия, а 10 переместилось на 8. Девятой по счету теперь решаем задачу на движение, сплавы и смеси или проценты.
А вот в “полку” второй части экзамена по профильной математике явно убыло. В геройском бою потеряло свой пункт 5 задание 13 — теперь отбирать нужные корни заданного промежутка не придется.
Самые крупные изменения в экзамене по профилю потерпел 15 номер. Когда-то давно эксперты решили упростить задание и вместо системы уравнения и неравенства оставили обычные неравенства. Но в этом году все повернулось на 360 градусов (математики, поняли, о чем мы?). Усложненный вариант вновь будет представлять собой систему уравнения и неравенства.
Вот и все, что касается изменений непосредственно заданий в ЕГЭ по математике профильного уровня 2022. Двигаемся дальше!
Новые задания на профиле 2022:
Да-да, новинками в этом сезоне не обделили и ЕГЭ по математике профильного уровня. Что же нас ждет за этой дверью?
Задание 3 — анализ функций. Формат, который годами игнорировался на экзамене по профильной математике, появился в 2022. Ух, а вот сейчас пристегивайте ремни, мы вплотную приблизились к заданиям повышенной сложности.
Номер 10 из блока «Элементы комбинаторики, статистики и теории вероятностей» и задание 11 на комплексные числа, напомним, раньше на ЕГЭ эту тему не затрагивали в принципе (даже у профильщиков).
Критерии оценивания ЕГЭ по профильной математике
По традиции экзамен по профильной математике в 2022 году будет оцениваться по давно разработанной системе первичных баллов. Максимальный балл за выполнение работы увеличился за счет сложности 13 задания: подняли с 2 до 3, за номер 15 теперь максимально можно получить 2 балла. В общей сложности за экзамен по профилю теперь можно получить 31 первичный балл.
“Ну вот получил я, например, 28, а во вторичных-то это сколько?” — обязательно спросите вы. И мы ответим. Для перевода во вторичную систему существует специально разработанная таблица, ориентироваться в которой предельно просто. Ищем количество набранных баллов в первом столбике и смотрим их перевод во втором. Вуаля, вот и ваш результат!
А сейчас немного про минимальные пороги. Конечно, мы уверены, что вы превзойдете эти баллы в два, три, а то и все 10 раз, но все-таки знать это необходимо. Итак, чтобы получить аттестат и иметь возможность поступить в вуз, нужно набрать 5 первичных=23 вторичных балла. А если ваша мечта — поступление в подведомственные вузы Минобрнауки, то минимумом будет 7 первичных=33 вторичных балла.
Подготовка к экзамену по профильной математике
На самом деле как бы ни напугали вас все нововведения и изменения, страх нужно откинуть в сторону. Впереди год плодотворной и усиленной работы, за который вы сможете совершить чудо. Хотя в вопросе экзаменов речь идет совсем не о волшебстве.
Прорабатывайте и нарешивайте задания по каждой теме, учите то, что за 11 лет школы далось не так хорошо, повторяйте материал, который знаете в совершенстве. Составьте личный план подготовки к ЕГЭ по профильной математике и не опускайте руки. Помните, что ЕГЭ как уравнение: поначалу мы видим много неизвестных, но в итоге находим решение! Удачи!
Следите за новостями о ЕГЭ по профильной математике 2022 вместе с Умскул.
Решу егэ
1. Формулы сокращённого умножения
Наверх
2. Модуль числа
Определение:
Основные свойства модуля:
Наверх
3. Степень с действительным показателем
Свойства степени с действительным показателем
Пусть Тогда верны следующие соотношения:
Наверх
4. Корень n-ой степени из числа
Корнем n-ой степени из числа a называется число, n-ая степень которого равна a.
Арифметическим корнем четной степени n из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.
Основные свойства арифметического корня:
Наверх
5. Логарифмы
Определение логарифма:
Основное логарифмическое тождество:
Основные свойства логарифмов
Пусть Тогда верны следующие соотношения:
Наверх
6. Арифметическая прогрессия
Формула n-го члена арифметической прогрессии:
Характеристическое свойство арифметической прогрессии:
Сумма n первых членов арифметической прогрессии:
При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:
Наверх
7. Геометрическая прогрессия
Формула n-го члена геометрической прогрессии:
Характеристическое свойство геометрической прогрессии:
Сумма n первых членов геометрической прогрессии:
При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:
Наверх
8. Бесконечно убывающая геометрическая прогрессия
Сумма бесконечно убывающей геометрической прогрессии:
Наверх
9. Основные формулы тригонометрии
Зависимость между тригонометрическими функциями одного аргумента:
Формулы сложения:
Формулы тригонометрических функций двойного аргумента:
Формулы понижения степени:
Формулы приведения
Все формулы приведения получаются из соответствующих формул сложения. Например:
Применение формул приведения укладывается в следующую схему:
— определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что ;
— определяется знак приводимой функции;
— определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид или
, то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид
, то функция названия не меняет.
Например, получим формулу :
— — IV четверть;
— в IV четверти тангенс отрицательный;
— аргумент приводимой функции имеет вид , следовательно, название функции меняется. Таким образом,
Формулы преобразования суммы тригонометрических функций в произведение:
Формулы преобразования произведения тригонометрических функций в сумму:
Наверх
10. Производная и интеграл
Таблица производных некоторых элементарных функций
Правила дифференцирования:
1.
2.
3.
4.
5.
Уравнение касательной к графику функции в его точке
:
Таблица первообразных для некоторых элементарных функций
Правила нахождения первообразных
Пусть ― первообразные для функций
и
соответственно, a, b, k ― постоянные,
Тогда:
— ― первообразная для функции
— ― первообразная для функции
— ― первообразная для функции
— Формула Ньютона-Лейбница:
1. Треугольник
Пусть ― длины сторон BC, AC, AB треугольника ABC соответственно;
― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно;
― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC;
― площадь треугольника ABC. Тогда имеют место следующие соотношения:
(теорема синусов);
(теорема косинусов);
Наверх2. Четырёхугольники
Параллелограмм
Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.
Прямоугольником называется параллелограмм, у которого все углы прямые.
Ромбом называется параллелограмм, все стороны которого равны.
Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.
Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.
Площадь четырехугольника
Площадь параллелограмма равна произведению его основания на высоту.
Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.
Площадь трапеции равна произведению полусуммы ее оснований на высоту.
Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Наверх
3. Окружность и круг
Соотношения между элементами окружности и круга
Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, — длина дуги в
градусов,
— длина дуги в
радиан,
— площадь сектора, ограниченного дугой в n градусов,
— площадь сектора, ограниченного дугой в
радиан. Тогда имеют место следующие соотношения:
Вписанный угол
Вписанный угол измеряется половиной дуги, на которую он опирается.
Вписанные углы, опирающиеся на одну и ту же дугу, равны.
Вписанный угол, опирающийся на полуокружность, — прямой.
Вписанная окружность
Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
Описанная окружность
Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.
Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны
Наверх
4. Призма
Пусть H ― высота призмы, AA1 ― боковое ребро призмы, ― периметр основания призмы,
― площадь основания призмы,
― площадь боковой поверхности призмы,
― площадь полной поверхности призмы, V ― объем призмы,
― периметр перпендикулярного сечения призмы,
― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Свойства параллелепипеда:
— противоположные грани параллелепипеда равны и параллельны;
— диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;
— квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Наверх
5. Пирамида
Пусть H ― высота пирамиды, ― периметр основания пирамиды,
― площадь основания пирамиды,
― площадь боковой поверхности пирамиды,
― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:
;
.
Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны
, то
Наверх
6. Усечённая пирамида
Пусть H ― высота усеченной пирамиды, и
― периметры оснований усеченной пирамиды,
и
― площади оснований усеченной пирамиды,
― площадь боковой поверхности усеченной пирамиды,
― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.
Тогда имеют место следующие соотношения:
Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны
, то:
Наверх
7. Цилиндр
Пусть h ― высота цилиндра, r ― радиус цилиндра, ― площадь боковой поверхности цилиндра,
― площадь полной поверхности цилиндра, V ― объем цилиндра.
Тогда имеют место следующие соотношения:
Наверх
8. Конус
Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса, ― площадь боковой поверхности конуса,
― площадь полной поверхности конуса, V ― объем конуса.
Тогда имеют место следующие соотношения:
Наверх
9. Усечённый конус
Пусть h ― высота усеченного конуса, r и ― радиусы основания усеченного конуса, l ― образующая усеченного конуса,
― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:
Наверх
10. Сфера и шар
Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы, ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара,
― объем сегмента, высота которого равна h,
― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:
Наверх
Материалы, выдаваемые на экзамене, смотрите здесь
Структура егэ по профильной математике 2022
Ваш вариант экзамена по профильной математике все так же будет состоять из двух частей. В первой от вас потребуется краткий ответ, который вы впоследствии занесете в бланк. Во второй уже посложнее — развернутое решение каждого задания.
Всего в ЕГЭ по профильной математике 3 блока заданий:
- алгебра и начала анализа (8 заданий);
- геометрия (4 задания);
- реальная математика (6 заданий);
Помните, что экзамен по профильной математике в 2022 году, как и раньше, продлится 235 минут. Рассчитывайте свое время и успевайте решить максимальное количество заданий.