Формулы по математике для ЕГЭ, теория, пособия по подготовке и справочные материалы в Москве

Формулы по математике для ЕГЭ, теория, пособия по подготовке и справочные материалы в Москве ЕГЭ

Что в итоге

Теперь вы знаете больше про ЕГЭ по математике 2022. Вы познакомились со структурой и поняли, на что стоит обращать внимание при подготовке. А еще узнали, что первую часть обязательно решать на максимум, а вторая не такая страшная, как кажется. Но наверняка у вас еще осталась куча вопросов: по оформлению и конкретному решению каких-то заданий точно.

Обо всем этом я подробно рассказываю своим ученикам во время подготовки к ЕГЭ по математике. Мы изучаем все непонятные темы, а потом прорешиваем много однотипных заданий — так легче запоминается формат. Еще мы всегда проводим пробные экзамены, чтобы выявить слабые места.

Базовый уровень егэ по математике

Как устроен базовый ЕГЭ по математике? Экзамен идет 180 минут, он состоит из 21 задания, за каждое из которых можно получить 1 балл. Этот экзамен единственный, который переводится не в 100-бальную систему, а в оценки.

Пока перевод баллов ЕГЭ по математике базового уровня в оценки не опубликован ФИПИ, но мы добавим его в статью, как только появится официальная информация.

В ЕГЭ по математике базового уровня 6 тематических блоков:

Тематические блоки, ЕГЭ по математике 2022, базовый уровень

Подробнее про базовый ЕГЭ по математике, включая разбор всех заданий, читайте здесь, а мы перейдём к профильному.

Задания с развернутым ответом: немного статистики

Многие думают, что эта часть ЕГЭ по математике очень сложная. Поэтому ребята, которые не рассчитывают на высокие баллы, даже не приступают к ней. И очень зря! С помощью этих заданий можно заработать дополнительные баллы и побороться за высокое место в рейтинге.

Сейчас будет немного статистики. В среднем около 30% учеников получают полные 2 балла за решение № 12, а вот неравенство № 14 дается хуже, только около 12% с ним справляются на полный балл. Геометрия даётся ещё хуже: стереометрию № 13 полностью решают 2% выпускников, планиметрию (№ 16) менее 5%.

А вот с экономической задачей (№ 15) справляются около 15%, а это целых 2 балла! Что касается № 17 и 18, то они даются ещё хуже, но на то они и самые сложные, хотя 1 балл за № 18 по статистике получают около 25% сдающих — там нужно просто привести пример.

Как решать часть с кратким ответом

Ни в коем случае не пренебрегайте частью с кратким ответом! Иначе будет обидно: например, вы наберете за экономическую задачу № 15 полные 2 балла, но потеряете их в двух заданиях первой части. Это актуально для всех ЕГЭ: подробнее о том, как идеально справляться с первой частью экзамена, читайте здесь.

Еще одно заблуждение: «часть с кратким ответом простая, к ней можно не готовиться». Даже в первой части иногда встречаются такие задания, которые ученики даже не решают, потому что не готовились к ним.

Как я уже говорила, часть с кратким ответом содержит 11 заданий. Начинать подготовку необходимо именно с заданий базового уровня сложности, потому что это та основа, на которую потом накладывается более сложная теория.

Что касается задач повышенного уровня сложности, то среди каждого номера есть лайфхаки, например, в этой статье я уже рассказывала про № 11, в котором нужно работать с производной.

Какие задания входят в егэ по математике?

Здесь вам на помощь приходят документы с официального сайта ФИПИ: кодификатор, демоверсия и спецификация.

  • Кодификатор — это краткий перечень всех блоков и тем, которые включены в экзамен.

    Сейчас кодификатор общий для обоих уровней экзамена, как базового, так и профильного. Он снова представляет собой единый документ, так что не запутаетесь.

  • Демоверсия — типовой вариант ЕГЭ. Он показывает уровень экзамена и ориентировочную сложность заданий.
  • Спецификация — это документ, описывающий структуру экзамена и разбалловку.

Какие темы важно знать для егэ по математике 2022?

В математике, как и в любом предмете, есть опорные темы. Если вы их выучите, будет легче справиться с экзаменом.

Квадратные уравнения

Эти уравнения мы учимся решать еще в 7 классе. Они встречаются в ЕГЭ по математике постоянно: и как самостоятельные задания, и внутри более сложных уравнений или неравенств. Квадратные уравнения могут встретиться в математических моделях № 8 и № 15, в задачах на геометрию и стереометрию, в задании № 17 с параметром.

Самое главное — хорошо знать универсальные методы решения. Первый — через формулу дискриминанта, второй — через теорему Виета, которая может сэкономить время на экзамене.

Про ЕГЭ:  История Отечества. Справочник для школьников и поступающих в вузы. Курс подготовки к ОГЭ, ЕГЭ

Особенности уровней егэ по математике

В 2022 году ЕГЭ по математике разделили на базовый и профильный уровни. Это упростило жизнь выпускникам, которые не планируют поступать на специальности, связанные с математикой. Если ЕГЭ по математике нужен только для получения аттестата, можно сдать его облегченную версию, оставив время и силы для профильных экзаменов.

План успешной подготовки к егэ по математике 2022

Если вы хотите получить больше 80 баллов на ЕГЭ, нужно идеально решать часть с кратким ответом, а также справляться с большинством заданий с развернутым ответом.

Чтобы постепенно прорабатывать материал, воспользуйтесь кодификатором. В нем обратите внимание на таблицу 2, а именно на блоки:

  • Алгебра
  • Уравнения и неравенства
  • Элементы комбинаторики, статистики и теории вероятностей
  • Функции
  • Начала математического анализа
  • Геометрия

Ориентируйтесь на указанную последовательность, но геометрию изучайте параллельно с остальными блоками — на нее нужно больше времени.

Самое главное — ни в коем случае не ограничивайтесь теорией. Ее у вас не спросят на экзамене, а вот задания решать придется. Поэтому тренируйте практические навыки: актуальные задания вы сможете найти в открытом банке заданий на сайте ФИПИ или в нашем тренажере «Решутест».

Профильный уровень егэ по математике

Данный экзамен, как и остальные ЕГЭ, переводится в 100-бальную систему.

Пока перевод баллов ЕГЭ по математике профильного уровня в 100-бальную систему пока не опубликован ФИПИ. Мы добавим его в статью, как только появится официальная информация.

Экзамен состоит из двух частей: Часть 1 с кратким ответом, а Часть 2 — с развернутым. Длится он 235 минут. Всего есть 18 заданий, которые разделены на 3 блока: алгебра, геометрия и реальная математика. Максимальное количество первичных баллов — 31.

База, профиль — неважно, к какому именно уровню вы готовитесь. В любом случае надо не только правильно решить каждое задание, но и оформить его так, чтобы проверяющие ни к чему не придрались. Нарисовать и описать график, расписать решение уравнения или задачи… И это не все: нужно еще и внести ответы в бланк без ошибок.

Поэтому на своих занятиях я сразу показываю своим ученикам, как правильно оформлять каждое задание в ЕГЭ по математике. Мы разбираем все критерии и учимся правильно отвечать на вопросы. А еще я всегда помогаю ученикам закрыть пробелы в знаниях и объясняю сложные темы столько раз, сколько нужно.

И куда же без лайфхаков? Всегда рассказываю лучший способ решения типичных заданий. Так что мои ученики приходят на экзамены подготовленными и не нервничают, когда видят задачу. Хотите также? Приходите ко мне на курсы подготовки к ЕГЭ по математике — научу!

Проценты

Самая нелюбимая тема моих учеников после тригонометрии, которую необходимо хорошо знать. Проценты нужны для реальной математики — это № 8 (с кратким ответом) и № 15 (с развернутым ответом). Понимание этой темы может принести вам 3 первичных балла.

Разделы егэ по математике

  • Алгебра и начала анализа — 8 заданий, 13 первичных баллов
  • Геометрия — 4 задания, 8 первичных баллов
  • Реальная математика — 6 заданий, 10 первичных баллов

Решу егэ

Геометрия
1. Формулы сокращённого умножения

(a плюс b) в квадрате =a в квадрате плюс 2ab плюс b в квадрате

(a минус b) в квадрате =a в квадрате минус 2ab плюс b в квадрате

(a плюс b) в кубе =a в кубе плюс 3a в квадрате b плюс 3ab в квадрате плюс b в кубе

(a минус b) в кубе =a в кубе минус 3a в квадрате b плюс 3ab в квадрате минус b в кубе

a в квадрате минус b в квадрате =(a минус b)(a плюс b)

a в кубе плюс b в кубе =(a плюс b)(a в квадрате минус ab плюс b в квадрате )

a в кубе минус b в кубе =(a минус b)(a в квадрате плюс ab плюс b в квадрате )

Наверх

2. Модуль числа

Определение: left| a |= система выражений новая строка a,a больше или равно 0, новая строка минус a,a меньше 0. конец системы .

Основные свойства модуля:

|a| больше или равно 0;

|a|=| минус a|;

 система выражений новая строка |a| больше или равно a, новая строка |a| больше или равно минус a; конец системы .

|a|=a равносильно a больше или равно 0;

|a|= минус a равносильно a меньше или равно 0.

Наверх

3. Степень с действительным показателем

Свойства степени с действительным показателем

Пусть a больше 0,b больше 0,x принадлежит R ,y принадлежит R . Тогда верны следующие соотношения:

Наверх

4. Корень n-ой степени из числа

Корнем n-ой степени (n принадлежит N ,n больше или равно 2) из числа a называется число, n-ая степень которого равна a.
Арифметическим корнем четной степени n(n=2k,k принадлежит N ) из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.

Основные свойства арифметического корня:

a больше или равно 0:( корень из [ n]a) в степени (n) =a, корень из [ n]a в степени (n) =a, корень из [ n]a в степени (m) = левая круглая скобка корень из [ n]a правая круглая скобка в степени (m) , корень из [ m] корень из [ n]a= корень из [ mn]a;

a принадлежит R : корень из [ n]a в степени (n) =|a|;

a больше или равно 0,b больше или равно 0: корень из [ n]ab= корень из [ n]a умножить на корень из [ n]b, корень из [ n] дробь: числитель: a, знаменатель: b конец дроби = дробь: числитель: корень из [ n]a, знаменатель: корень из [ n]b конец дроби (b не равно 0);

a меньше 0,b меньше 0: корень из [ n]ab= корень из [ n] минус a умножить на корень из [ n] минус b, корень из [ n] дробь: числитель: a, знаменатель: b конец дроби = дробь: числитель: корень из [ n] минус a, знаменатель: корень из [ n] минус b конец дроби ;

a больше или равно 0,b больше или равно 0:a корень из [ n]b= корень из [ n]a в степени (n) b;

a меньше 0,b больше или равно 0:a корень из [ n]b= минус корень из [ n]a в степени (n) b.

Наверх

5. Логарифмы

Определение логарифма: log _ab=cunderseta больше 0,a не равно 1mathop равносильно a в степени (c) =b.

Основное логарифмическое тождество: a в степени (log ) _ab=b.

Основные свойства логарифмов

Пусть a больше 0,a не равно 1,b больше 0,b не равно 1,x больше 0,y больше 0,p принадлежит R . Тогда верны следующие соотношения:

Наверх

6. Арифметическая прогрессия

Формула n-го члена арифметической прогрессии: a_n=a_1 плюс d(n минус 1).

Характеристическое свойство арифметической прогрессии: a_n= дробь: числитель: a_n минус 1 плюс a_n плюс 1, знаменатель: 2 конец дроби ,n больше или равно 2.

Сумма n первых членов арифметической прогрессии: S_n= дробь: числитель: a_1 плюс a, знаменатель: 2 конец дроби n.

При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:

S_n= дробь: числитель: 2a_1 плюс d(n минус 1), знаменатель: 2 конец дроби n;

S_n= дробь: числитель: 2a_n минус d(n минус 1), знаменатель: 2 конец дроби n;

a_n= дробь: числитель: a_n минус k плюс a_n плюс k, знаменатель: 2 конец дроби ,k меньше n;

a_k плюс a_n=a_k минус m плюс a_n плюс m,m меньше k;

d= дробь: числитель: a_n минус a_k, знаменатель: n минус k конец дроби .

Наверх

7. Геометрическая прогрессия

Формула n-го члена геометрической прогрессии: a_n=a_1q в степени (n минус 1) .

Характеристическое свойство геометрической прогрессии: a_n в квадрате =a_n минус 1a_n плюс 1,n больше или равно 2.

Сумма n первых членов геометрической прогрессии: S_n= дробь: числитель: a_1 минус a_nq, знаменатель: 1 минус q конец дроби , q не равно 1.

При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:

S_n= дробь: числитель: a_1(1 минус q в степени (n) ), знаменатель: 1 минус q конец дроби ;

a_n в квадрате =a_n минус ka_n плюс k,k меньше n;

a_ka_n=a_k минус ma_n плюс m,m меньше k;

|q|= корень из [ n минус k] дробь: числитель: a_n, знаменатель: a_k конец дроби .

Наверх

8. Бесконечно убывающая геометрическая прогрессия

Сумма бесконечно убывающей геометрической прогрессии: S= дробь: числитель: a_1, знаменатель: 1 минус q конец дроби .

Наверх

9. Основные формулы тригонометрии

Зависимость между тригонометрическими функциями одного аргумента:

 синус в квадрате альфа плюс косинус в квадрате альфа =1;

 тангенс альфа = дробь: числитель: синус альфа , знаменатель: косинус альфа конец дроби ;

ctg альфа = дробь: числитель: косинус альфа , знаменатель: синус альфа конец дроби ;

 тангенс альфа ctg альфа =1;

1 плюс тангенс в квадрате альфа = дробь: числитель: 1, знаменатель: косинус в квадрате альфа конец дроби ;

1 плюс ctg в квадрате альфа = дробь: числитель: 1, знаменатель: синус в квадрате альфа конец дроби .

Формулы сложения:

 косинус ( альфа плюс бета )= косинус альфа косинус бета минус синус альфа синус бета ;

 косинус ( альфа минус бета )= косинус альфа косинус бета плюс синус альфа синус бета ;

 синус ( альфа плюс бета )= синус альфа косинус бета плюс косинус альфа синус бета ;

 синус ( альфа минус бета )= синус альфа косинус бета минус косинус альфа синус бета ;

 тангенс ( альфа плюс бета )= дробь: числитель: тангенс альфа плюс тангенс бета , знаменатель: 1 минус тангенс альфа тангенс бета конец дроби ;

 тангенс ( альфа минус бета )= дробь: числитель: тангенс альфа минус тангенс бета , знаменатель: 1 плюс тангенс альфа тангенс бета конец дроби ;

ctg( альфа плюс бета )= дробь: числитель: ctg альфа ctg бета минус 1, знаменатель: ctg бета плюс ctg альфа конец дроби ;

ctg( альфа минус бета )= дробь: числитель: ctg альфа ctg бета плюс 1, знаменатель: ctg бета минус ctg альфа конец дроби .

Формулы тригонометрических функций двойного аргумента: синус 2 альфа =2 синус альфа косинус альфа ;

 синус 2 альфа = дробь: числитель: 2 тангенс альфа , знаменатель: 1 плюс тангенс в квадрате альфа конец дроби ;

 косинус 2 альфа = косинус в квадрате альфа минус синус в квадрате альфа ;

 косинус 2 альфа =2 косинус в квадрате альфа минус 1;

 косинус 2 альфа =1 минус 2 синус в квадрате альфа ;

 косинус 2 альфа = дробь: числитель: 1 минус тангенс в квадрате альфа , знаменатель: 1 плюс тангенс в квадрате альфа конец дроби ;

 тангенс 2 альфа = дробь: числитель: 2 тангенс альфа , знаменатель: 1 минус тангенс в квадрате альфа конец дроби ;

ctg2 альфа = дробь: числитель: ctg в квадрате альфа минус 1, знаменатель: 2ctg альфа конец дроби .

Формулы понижения степени:

 синус в квадрате альфа = дробь: числитель: 1 минус косинус 2 альфа , знаменатель: 2 конец дроби ;

 косинус в квадрате альфа = дробь: числитель: 1 плюс косинус 2 альфа , знаменатель: 2 конец дроби ;

 тангенс в квадрате альфа = дробь: числитель: 1 минус косинус 2 альфа , знаменатель: 1 плюс косинус 2 альфа конец дроби ;

ctg в квадрате альфа = дробь: числитель: 1 плюс косинус 2 альфа , знаменатель: 1 минус косинус 2 альфа конец дроби .

Формулы приведения

Все формулы приведения получаются из соответствующих формул сложения. Например:

 косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка = косинус дробь: числитель: Пи , знаменатель: 2 конец дроби косинус альфа минус синус дробь: числитель: Пи , знаменатель: 2 конец дроби синус альфа = минус синус альфа .

Применение формул приведения укладывается в следующую схему:

— определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что  альфа принадлежит левая круглая скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая круглая скобка ;

— определяется знак приводимой функции;

— определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид  левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби pm альфа правая круглая скобка или  левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби pm альфа правая круглая скобка , то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид ( Пи pm альфа ), то функция названия не меняет.

Например, получим формулу  тангенс левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка :

 дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа принадлежит левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби ;2 Пи правая круглая скобка — IV четверть;

— в IV четверти тангенс отрицательный;

— аргумент приводимой функции имеет вид  дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа , следовательно, название функции меняется. Таким образом,  тангенс левая круглая скобка дробь: числитель: 3 Пи , знаменатель: 2 конец дроби плюс альфа правая круглая скобка = минус ctg альфа .

Формулы преобразования суммы тригонометрических функций в произведение:

 синус альфа плюс синус бета =2 синус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 синус альфа минус синус бета =2 синус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби ;

 косинус альфа плюс косинус бета =2 косинус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби косинус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 косинус альфа минус косинус бета = минус 2 синус дробь: числитель: альфа плюс бета , знаменатель: 2 конец дроби синус дробь: числитель: альфа минус бета , знаменатель: 2 конец дроби ;

 тангенс альфа плюс тангенс бета = дробь: числитель: синус ( альфа плюс бета ), знаменатель: косинус альфа косинус бета конец дроби ;

 тангенс альфа минус тангенс бета = дробь: числитель: синус ( альфа минус бета ), знаменатель: косинус альфа косинус бета конец дроби ;

ctg альфа плюс ctg бета = дробь: числитель: синус ( альфа плюс бета ), знаменатель: синус альфа синус бета конец дроби ;

ctg альфа минус ctg бета = дробь: числитель: синус ( бета минус альфа ), знаменатель: синус альфа синус бета конец дроби .

Формулы преобразования произведения тригонометрических функций в сумму:

Про ЕГЭ:  Типовые тестовые задания для подготовки к ЕГЭ по русскому языку №1,4,5,6,7,8,9,10,11,12,13,14,18,19 | Тест по русскому языку (11 класс) на тему: | Образовательная социальная сеть

 косинус альфа косинус бета = дробь: числитель: 1, знаменатель: 2 конец дроби ( косинус ( альфа минус бета ) плюс косинус ( альфа плюс бета ));

 синус альфа синус бета = дробь: числитель: 1, знаменатель: 2 конец дроби ( косинус ( альфа минус бета ) минус косинус ( альфа плюс бета ));

 синус альфа косинус бета = дробь: числитель: 1, знаменатель: 2 конец дроби ( синус ( альфа плюс бета ) плюс синус ( альфа минус бета )).

Наверх

10. Производная и интеграл

Таблица производных некоторых элементарных функций

Правила дифференцирования:

1.  левая круглая скобка f(x) плюс g(x) правая круглая скобка в степени (prime ) =f'(x) плюс g'(x);

2.  левая круглая скобка cf(x) правая круглая скобка в степени (prime ) =cf'(x);

3.  левая круглая скобка f(x)g(x) правая круглая скобка в степени (prime ) =f'(x)g(x) плюс f(x)g'(x);

4.  левая круглая скобка дробь: числитель: f(x), знаменатель: g(x) конец дроби правая круглая скобка в степени (prime ) = дробь: числитель: f'(x)g(x) минус f(x)g'(x), знаменатель: g в квадрате (x) конец дроби ;

5.  левая квадратная скобка f(g(x)) правая квадратная скобка в степени (prime ) =f'(g(x))g'(x).

Уравнение касательной к графику функции y=f(x) в его точке (x_0;f(x_0)):

y=f'(x_0)(x минус x_0) плюс f(x_0).

Таблица первообразных для некоторых элементарных функций

Правила нахождения первообразных

Пусть F(x),G(x) ― первообразные для функций f(x) и g(x) соответственно, a, b, k ― постоянные, k не равно 0. Тогда:

F(x) плюс G(x) ― первообразная для функции f(x) плюс g(x);

aF(x) ― первообразная для функции af(x);

 дробь: числитель: 1, знаменатель: k конец дроби F(kx плюс b) ― первообразная для функции f(kx плюс b);

— Формула Ньютона-Лейбница:  принадлежит tlimits_a в степени (b) f(x)dx=F(b) минус F(a).

1. Треугольник

Пусть a,b,c ― длины сторон BC, AC, AB треугольника ABC соответственно; p= дробь: числитель: a плюс b плюс c, знаменатель: 2 конец дроби ― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно; h_a,h_b,h_c ― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC; S_vartriangle ABC ― площадь треугольника ABC. Тогда имеют место следующие соотношения:

 дробь: числитель: a, знаменатель: синус A конец дроби = дробь: числитель: b, знаменатель: синус B конец дроби = дробь: числитель: c, знаменатель: синус C конец дроби =2R (теорема синусов);

c в квадрате =a в квадрате плюс b в квадрате минус 2ab косинус C (теорема косинусов);

S_vartriangle ABC= дробь: числитель: 1, знаменатель: 2 конец дроби ah_a;

S_vartriangle ABC= дробь: числитель: 1, знаменатель: 2 конец дроби ab синус C;

S_vartriangle ABC= дробь: числитель: abc, знаменатель: 4R конец дроби ;

S_vartriangle ABC=pr;

S_vartriangle ABC= корень из (p(p минус a)(p минус b)(p минус c)) .

Наверх2. Четырёхугольники

Параллелограмм

Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.

Прямоугольником называется параллелограмм, у которого все углы прямые.

Ромбом называется параллелограмм, все стороны которого равны.

Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.

Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.

Площадь четырехугольника

Площадь параллелограмма равна произведению его основания на высоту.

Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.

Площадь трапеции равна произведению полусуммы ее оснований на высоту.

Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.

Наверх

3. Окружность и круг

Соотношения между элементами окружности и круга

Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, l_n градусов  — длина дуги в n градусов, l_ альфа  — длина дуги в  альфа радиан, S_n градусов  — площадь сектора, ограниченного дугой в n градусов, S_ альфа  — площадь сектора, ограниченного дугой в  альфа радиан. Тогда имеют место следующие соотношения:

Вписанный угол

Вписанный угол измеряется половиной дуги, на которую он опирается.

Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на полуокружность, — прямой.

Вписанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.

Описанная окружность

Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.

Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны 180 градусов.

Наверх

4. Призма

Пусть H ― высота призмы, AA1 ― боковое ребро призмы, P_осн ― периметр основания призмы, S_осн ― площадь основания призмы, S_бок ― площадь боковой поверхности призмы, S_полн ― площадь полной поверхности призмы, V ― объем призмы, P_bot  ― периметр перпендикулярного сечения призмы, S_bot  ― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:

S_бок=P_bot AA_1;

S_полн=2S_осн плюс S_бок;

V=S_bot AA_1;

V=S_оснH.

Свойства параллелепипеда:

— противоположные грани параллелепипеда равны и параллельны;

— диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;

— квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Наверх

5. Пирамида

Пусть H ― высота пирамиды, P_осн ― периметр основания пирамиды, S_осн ― площадь основания пирамиды, S_бок ― площадь боковой поверхности пирамиды, S_полн ― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:

S_полн=S_осн плюс S_бок;

V= дробь: числитель: 1, знаменатель: 3 конец дроби S_оснH .


Замечание.
Если все двугранные углы при основании пирамиды равны  бета , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны h_бок, то S_бок= дробь: числитель: 1, знаменатель: 2 конец дроби P_оснh_бок= дробь: числитель: S_осн, знаменатель: косинус бета конец дроби .

Наверх

6. Усечённая пирамида

Пусть H ― высота усеченной пирамиды, P_1 и P_2 ― периметры оснований усеченной пирамиды, S_1 и S_2 ― площади оснований усеченной пирамиды, S_бок ― площадь боковой поверхности усеченной пирамиды, S_полн ― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.

Тогда имеют место следующие соотношения:

S_полн=S_1 плюс S_2 плюс S_бок;

V= дробь: числитель: 1, знаменатель: 3 конец дроби H(S_1 плюс S_2 плюс корень из (S) _1S_2).

Замечание. Если все двугранные углы при основании пирамиды равны  бета , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны h_бок, то: S_бок= дробь: числитель: 1, знаменатель: 2 конец дроби (P_1 плюс P_2)h_бок= дробь: числитель: |S_1 минус S_2|, знаменатель: косинус бета конец дроби .

Наверх

7. Цилиндр

Пусть h ― высота цилиндра, r ― радиус цилиндра, S_бок ― площадь боковой поверхности цилиндра, S_полн ― площадь полной поверхности цилиндра, V ― объем цилиндра.

Тогда имеют место следующие соотношения:

S_бок=2 Пи rh;

S_полн=2 Пи r(r плюс h);

V= Пи r в квадрате h.

Наверх

8. Конус

Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса, S_бок ― площадь боковой поверхности конуса, S_полн ― площадь полной поверхности конуса, V ― объем конуса.

Тогда имеют место следующие соотношения:

S_бок= Пи rl;

S_полн= Пи r(r плюс l);

V= дробь: числитель: 1, знаменатель: 3 конец дроби Пи r в квадрате h.

Наверх

9. Усечённый конус

Пусть h ― высота усеченного конуса, r и r_1 ― радиусы основания усеченного конуса, l ― образующая усеченного конуса, S_бок ― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:

S_бок= Пи (r плюс r_1)l;

V= дробь: числитель: 1, знаменатель: 3 конец дроби Пи h(r в квадрате плюс rr_1 плюс r_1 в квадрате ).

Наверх

10. Сфера и шар

Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы, S_h ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара, V_сегм ― объем сегмента, высота которого равна h, V_сект ― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:

Про ЕГЭ:  «Высказывая свою точку зрения на поставленную в тексте проблему, И.М. Фейгенберг серьёзно подходит к выстраиванию системы аргументации. Излагая свои размышления, автор использует синтаксические средства: (A)___________ (например, в предложениях 12, 17, 36), (Б)___________ (в предложениях 22, 23, 30), а также лексическое средство (В)___________ («неопределённый - определённый» в предложении 11, «безответственность - ответственность» в предложении 28). В то же время И.М. Фейгенберг стремится привлечь к размышлениям читателей, чему способствует приём - (Г)___________ (предложения 25-28)».Список терминов: 1) антонимы 2) разговорная лексика 3) парцелляция 4) эпитет 5) синонимы 6) вводные слова 7) восклицательные предложения 8) ряды однородных членов 9) вопросно-ответная форма изложения

Наверх

Материалы, выдаваемые на экзамене, смотрите здесь

Структура егэ по математике 2022

Часть 1:

  • Приносит 11 баллов, то есть 35% всего экзамена
  • 11 заданий с кратким ответом

Часть 2:

  • Приносит 20 баллов, то есть 65% всего экзамена
  • 7 заданий с развернутым ответом

Внимание! Вся нумерация заданий в статье соответствует ЕГЭ 2022 года.

В заданиях с кратким ответом нужно лишь записать верное число в бланк. Заданий с развернутым ответом 7, в них нужно подробно расписать решение, которое должно соответствовать критериям оценивания.

ЕГЭ — стандартизированный экзамен, поэтому каждое задание всегда соответствует определенной теме.

Темы заданий с кратким ответом, ЕГЭ по математике 2022, профиль

Задания с кратким ответом принесут вам до 11 первичных баллов. Если не понимаете, что это за баллы и откуда они берутся, почитайте эту статью. Самая популярная цель на ЕГЭ по математике — набрать 80 баллов, для этого раньше было необходимо 19 первичных баллов (что сейчас — мы еще не знаем).

Ранее многие ученики пользовались рабочей стратегией — решить всю часть с кратким ответом, а также № 12, 14 и 15. Если хорошо разбирались в геометрии, выбирали № 13 и 16 — или использовали их как запасные задания. Сейчас стратегия должна быть другая, так как № 13 (стереометрия) стал стоить дороже — 3 балла вместо 2, а № 15 (экономическая задача) — подешевел с 3 баллов до 2.

Треугольники

Эта замечательная тема, которую проходят в 7 классе — основа основ всей геометрии. Она нужна и для решения стереометрии. и для простейших планиметрических задач. Еще треугольники необходимы, чтобы освоить огромное количество теорем. Выучите все, что с ними связано!

Формулы по математике для егэ, теория, пособия по подготовке и справочные материалы в москве

Факт 1.
(bullet) Множество натуральных чисел (mathbb{N}) – это числа (1,
2, 3, 4 )
и т.д.
(bullet) Множество целых чисел (mathbb{Z}) состоит из натуральных чисел, противоположных им ((-1, -2, -3 ) и т.д.) и нуля (0).
(bullet) Рациональные числа (mathbb{Q}) – числа вида (dfrac ab), где (ain mathbb{Z}), (bin mathbb{N}).
 
Таким образом, существует включение: (mathbb{N}) содержится в (mathbb{Z}), а (mathbb{Z}) содержится в (mathbb{Q}).
 

Факт 2.
(bullet) Правила сложения дробей: [begin{aligned} &dfrac ab dfrac cb=dfrac{a c}b\[2ex]
&dfrac ab dfrac cd=dfrac{ad bc}{bd}end{aligned}]
Пример: (dfrac {31}6 dfrac {67}6=dfrac{31 67}6=dfrac{98}6) (bullet) Правила умножения дробей: [dfrac abcdot dfrac cd=dfrac{ac}{bd}] Пример: (dfrac 47cdot dfrac{14}5=dfrac{4cdot 14}{7cdot 5}) (bullet) Правила деления дробей: [dfrac ab: dfrac cd=dfrac abcdot dfrac dc] Пример: (dfrac 45 :dfrac 67=dfrac 45cdot dfrac 76) 

Факт 2.
(bullet) Сокращение дробей – деление числителя и знаменателя на одно и то же число, отличное от нуля.
Пример:
 (begin{aligned} &dfrac{98}6=dfrac{49cdot
2llap{/}}{3cdot
2llap{/}}=dfrac{49}3\[2ex]
&dfrac{4cdot 14}{7cdot 5}=dfrac{4cdot 2cdot
7llap{/}}{7llap{/}cdot
5}=dfrac 85\[2ex]
&dfrac{4cdot 7}{5cdot 6}=dfrac {2llap{/}cdot 2cdot 7}{5cdot
3cdot
2llap{/}}=dfrac{14}{15}end{aligned})
 (bullet) Если (dfrac ab) – несократимая дробь, то ее можно представить в виде конечной десятичной дроби тогда и только тогда, когда знаменатель (b) делится только на числа (2) и (5).
Пример: дробь (dfrac2{65}) нельзя представить в виде конечной десятичной дроби, так как (65=5cdot 13), то есть (dfrac2{65}=0,0307…)
дробь (dfrac3{160}) можно представить в виде конечной десятичной дроби, так как (160=2^5cdot 5), то есть (dfrac3{160}=0,01875).
 

Факт 3.
(bullet) Формулы сокращенного умножения:
(blacktriangleright)Квадрат суммы и квадрат разности:[(a b)^2=a^2 2ab b^2][(a-b)^2=a^2-2ab b^2]

(blacktriangleright)Куб суммы и куб разности:[(a b)^3=a^3 3a^2b 3ab^2 b^3quad {small{text{или}}}quad
(a b)^3=a^3 b^3 3ab(a b)]
[(a-b)^3=a^3-3a^2b 3ab^2-b^3quad {small{text{или}}}quad
(a-b)^3=a^3-b^3-3ab(a-b)]

Заметим, что применение данных формул справа налево часто помогает упростить вычисления:
(13^3 3cdot 13^2cdot 7 3cdot 13cdot 49 7^3=(13 7)^3=20^3=8000)

(blacktriangleright)Разность квадратов:[a^2-b^2=(a-b)(a b)]

(blacktriangleright)Сумма кубов и разность кубов:[a^3 b^3=(a b)(a^2-ab b^2)][a^3-b^3=(a-b)(a^2 ab b^2)]

Заметим, что не существует формулы суммы квадратов (a^2 b^2).
Заметим, что применение данных формул слева направо часто помогает упростить вычисления:

(dfrac{7^6-2^6}{7^4 14^2 16}=
dfrac{(7^2-2^2)(7^4 7^2cdot2^2 2^4)}
{7^4 (7cdot2)^2 2^4}=7^2-2^2=45)
 

Факт 4.
(bullet) Квадрат суммы нескольких слагаемых равен сумме квадратов этих слагаемых и удвоенных попарных произведений: [begin{aligned}
&(a b c)^2=a^2 b^2 c^2 2ab 2ac 2bc\[2ex]
&(a b c d)^2=a^2 b^2 c^2 d^2 2ab 2ac 2ad 2bc 2bd 2cd\[2ex]
&{small{text{и т.д.}}}end{aligned}]

Формулы тригонометрии

Очень важно знать формулы тригонометрии и уметь применять их. Хорошая новость: в справочных материалах можно найти несколько тригонометрических формул.

Но формул гораздо больше. Я советую не зубрить их, а научиться выводить: приходить к формулам шаг за шагом, опираясь на тождества. Кстати, мы учим выводить формулы на курсах подготовки к ЕГЭ: это полезно, чтобы оказаться на экзамене во всеоружии и ничего не перепутать.

Оцените статью
ЕГЭ Live