- Найти значение выражения (одинаковые основания)
- Найти значение выражения (разные основания)
- Алгоритм выполнения
- Задачи на использование теоремо вероятностях событий
- Задачи на классическоеопределение вероятности
- Найти значение выражения
- Найти произведение
- Найти сумму
- Найти частное от деления
- Разбор задания 2
- Теория
- Тренировочные задания с самопроверкой
Найти значение выражения (одинаковые основания)
Задача. 26 • 2-2 / 22.
Решение. В данном примере расчеты можно провести сразу же. Умножение степеней с одинаковым основанием заменяем на сложение показателей, деление — на их вычитание: 26 (-2) — 2 = 26 — 4 = 22 = 4.
https://www.youtube.com/watch?v=EIjvQrNJt9Y
Ответ: 4.
Найти значение выражения (разные основания)
Задача. 80,76 • 640,12.
Решение. Нужно привести степени к одинаковому основанию, представив 64 как 82. После этого их можно перемножить: 80,76 • 640,12 = 80,76 • (8)2*0,12 = 80,76 0,24 = 81 = 8.
Ответ: 8.
Алгоритм выполнения
Задание № 2 проверяет умение использовать элементы теории вероятностей при решении прикладных задач. Для его выполнения понадобится производить действия с дробями и совершать простые вычисления. Задание представляет собой текстовую задачу, которая решается с помощью базовых арифметических операций. В ответе необходимо указать целое или дробное число, записанное в виде конечной десятичной дроби.
План выполнения:
- Внимательно прочитайте задачу.
- Выявите число всех элементарных событий и число благоприятствующих событий, не пропустив ни одного из всех возможных исходов и не включая ни одного лишнего.
- При решении задачи на классическое определение вероятности установите, зависимы (совместны) или независимы (несовместны) элементарные события.
- Выполните на черновике необходимые вычисления.
- Запишите полученное число в поле ответа КИМ и бланк ответов № 1.
Задачи на использование теоремо вероятностях событий
Задача № 2 (4). Помещение освещается фонарём с двумя лампами. Вероятность перегорания лампы в течение года равна 0,2. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Решение:
Ответ: 0,96.
Задача № 2 (5). При проверке на вирусное заболевание делают анализ крови. Если анализ выявляет вирус, то результат является положительным. У больных анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен, то анализ может дать ложный положительный результат с вероятностью 0,01.
Решение:
Ответ: 0,05.
Задача № 2 (6). На экзамене по истории ученик отвечает на один вопрос из списка. Вероятность того, что это вопрос по теме «Крепостное право», равна 0,2. Вероятность того, что это вопрос по теме «Февральская революция», равна 0,15.
Решение:
Ответ: 0,35.
Задачи на классическоеопределение вероятности
Задача № 2 (1). В коробке лежит 40 шаров: 20 чёрных, 4 жёлтых и 16 зелёных. Наугад из коробки достают один шар. Найдите вероятность того, что этот шар будет жёлтым.
Решение:
Ответ: 0,1.
Задача № 2 (2). Участников шахматного турнира разбивают на пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 11 спортсменов из России, в том числе Пётр Орлов. Найдите вероятность того, что Пётр Орлов будет играть с шахматистом из России.
Решение:
Ответ: 0,4.
Задача № 2 (3). У Дениса в копилке лежит 6 рублёвых, 3 двухрублёвых, 2 пятирублёвых и 4 десятирублёвых монеты. Денис наугад достал из копилки одну монету. Найдите вероятность того, что оставшаяся в копилке сумма составит более 60 рублей.
Решение:
Ответ: 0,4.
Найти значение выражения
Задача. 4 • 72 6 • 72.
Решение. У слагаемых есть общий множитель, который мы можем вынести за скобку. После этого считаем выражение в скобке, потом возводим число в степень и перемножаем: (4 6) • 72 = 10 • 72 = 10 • 49 = 490.
Ответ: 490.
Найти произведение
Задача. 4 • 105 • 2,3 • 10-7.
Решение: Степени имеют одинаковые основания, поэтому мы можем умножить их, сложив показатели. После этого результат умножаем на остальные числа: 4 • 2,3 • 105 (-7) = 4 • 2,3 • 10-2 = 4 • 2,3 • 0,01 = 9,2 • 0,01 = 0,092.
Ответ: 0,092.
Найти сумму
Задача. 9,4 • 102 2,1 • 103.
Решение. Мы возводим числа в степень, затем выполняем умножение и сложение: 9,4 • 100 2,1 • 1000 = 940 2100 = 3040.
Ответ: 3040.
Теперь вы знаете чуть больше теории для ЕГЭ по математике. Задание 2 из профильного уровня достаточно легкое (хотя без практики тут тоже не обойтись), а вот в базе придется рассуждать и выполнять вычисления. Но и его можно выполнить без труда, если должным образом подготовиться к ЕГЭ.
Однако, лучший результат всегда дают занятия с опытными преподавателями, знающими специфику экзамена. Если нанимать репетитора для вас дорого, обратите внимание на курсы. Там разбирают не только задание 2 ЕГЭ по математике, но и многие другие номера, в том числе вторую часть. Грамотная подготовка — ключ к хорошим баллам, а значит, и месту на бюджете.
Найти частное от деления
Задача. 1,6 • 102 : 4 • 10-2.
Решение. У степеней одинаковое основание, поэтому мы можем поделить их, найдя разность показателей. После этого мы делим числа без степеней и выполняем умножение: 1,6 : 4 • 102 — (-2) = 1,6 : 4 • 104 = 1,6 : 4 • 10000 = 0,4 • 10000 = 4000.
Ответ: 4000.
Разбор задания 2
Решение задания 2 по математике ЕГЭ мы начнем с профильного уровня.
Задача. Замеры температуры проводились в течение 3 дней. Какой была минимальная температура 18 апреля?
Решение. Подобное задание 2 на ЕГЭ по математике профильного уровня кажется очень простым, однако в нем легко ошибиться. Обратим внимание на два момента: «18 апреля» и «минимальная». Для начала отсекаем колонки, относящиеся к 19 и 20 апреля — про них ничего не спрашивают. После этого ищем самую низкую точку и находим ее ординату.
Ответ: 6.
Задача. В помещении стоит кондиционер с датчиком температуры. Когда она достигает определенного максимального значения, кондиционер включается. Когда комната остужается до необходимой температуры, кондиционер автоматически выключается. На графике показана зависимость температуры от времени. Укажите, сколько минут кондиционер был выключен.
Решение. В этом номере важно умение логически рассуждать. Когда кондиционер отключен, температура увеличивается. На графике это показывается ростом функции вверх. Чтобы определить, сколько минут кондиционер был выключен, нужно найти область возрастания функции. Это промежуток между числами 6 и 9 на оси абсцисс. Теперь мы ищем время: 9 — 6 = 3.
Ответ: 3.
За выполнение такого простого номера можно получить 1 балл на экзамене по математике. Разбор задания 2 ЕГЭ мы продолжим базовым уровнем. Здесь встречаются несколько типов вопросов: степенные выражения с одинаковыми и разными основаниями, поиск частного, произведения и суммы.
Чтобы посмотреть все существующие виды заданий, зайдите на «Решу ЕГЭ» по базовой математике. Задание 2 там представлено более чем 40 вариантами. А в рамках этой статьи мы разберем несколько примеров задания 2 из ЕГЭ по математике базового уровня.
Теория
В задании 2 ЕГЭ по профильной математике теория достаточно простая. Это номер базового уровня сложности, он приносит 1 балл. Выпускникам дается график (иногда — диаграмма), нужно проанализировать его в соответствии с условием. Определение аргумента функции, поиск максимального и минимального значения — навыки, которые нужны для этого задания ЕГЭ.
Перечисленные понятия нужны для сдачи любого уровня ЕГЭ. Но задание 2 по базовой математике проверяет другие навыки. В нем выпускник должен произвести вычисления со степенями. Этот номер тоже считается легким, однако для его выполнения нужно знать куда больше теории. Формулы для ЕГЭ по базовой математике, к заданию 2:
- определение степени — an = a • a • a … • a, где n — натуральное число. a называют основанием степени, n — показателем.
- a0 = 1.
- a1 = a.
- a-n = 1 / an.
- anm=man.
- an • am = an m.
- an • bn = (a • b)n.
- an / am = an-m.
- an / bn = (a / b)n.
Тренировочные задания с самопроверкой
№ 2.1. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Ответ округлите до сотых.
№ 2.2. В некотором городе на 6000 появившихся на свет младенцев приходится 3360 девочек. Найдите частоту рождения мальчиков в этом городе.
№ 2.3. Вероятность того, что на тесте по математике ученица Настя верно решит не менее 12 задач, равна 0,84. Вероятность того, что Настя решит больше 11 задач, равна 0,96. Найдите вероятность того, что Настя решит ровно 12 задач.
№ 2.4. Склад освещается двумя фонарями с лампами. Вероятность перегорания лампы одного фонаря в течение одного месяца равна 0,4. Найдите вероятность того, что в течение месяца хотя бы одна лампа не перегорит.
№ 2.5. Вероятность того, что батарейка бракованная, равна 0,05. Покупатель в магазине выбирает случайную упаковку, в которой две такие батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.