Егэ, математика, профильный уровень, типовые экзаменационные варианты, 36 вариантов, ященко и.в., 2022
ЕГЭ, Математика, Профильный уровень, Типовые экзаменационные варианты, 36 вариантов, Ященко И.В., 2022.
Сборник предназначен для подготовки к единому государственному экзамену по математике и содержит 36 полных вариантов, составленных в соответствии с проектом демоверсии КИМ ЕГЭ по математике профильного уровня 2022 года. Варианты подготовлены специалистами федеральной комиссии разработчиков контрольных измерительных материалов ЕГЭ.
В соответствии с документами, регламентирующими ЕГЭ по математике профильного уровня в 2022 году, каждый вариант содержит 19 заданий. Первая часть состоит из 12 заданий, вторая из 7 заданий. Последние семь заданий подразумевают полное развёрнутое решение.
Примеры.
В правильной треугольной пирамиде SABC сторона основания АВ равна 12, и боковое ребро SA равно 13. Точки М и К середины рёбер SA и SB соответственно. Плоскость а содержит прямую MN и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость а делит медиану СЕ основания в отношении 5:1, считая от точки С.
б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью а.
15 января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:
1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r.
Содержание
Введение
Карта индивидуальных достижений обучающегося
Инструкция по выполнению работы
Типовые бланки ответов ЕГЭ
Вариант 1
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Вариант 6
Вариант 7
Вариант 8
Вариант 9
Вариант 10
Вариант 11
Вариант 12
Вариант 13
Вариант 14
Вариант 15
Вариант 16
Вариант 17
Вариант 18
Вариант 19
Вариант 20
Вариант 21
Вариант 22
Вариант 23
Вариант 24
Вариант 25
Вариант 26
Вариант 27
Вариант 28
Вариант 29
Вариант 30
Вариант 31
Вариант 32
Вариант 33
Вариант 34
Вариант 35
Вариант 36
Ответы
Решения и критерии оценивания заданий 13-19.
Купить
.
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Дата публикации: 07.03.2022 18:09 UTC
Теги:ЕГЭ по математике :: математика :: Ященко :: профильный уровень
Следующие учебники и книги:
- Математика, Подготовка к ЕГЭ 2022, Базовый уровень, 40 тренировочных вариантов по демоверсии на 2022 год, Лысенко Ф.Ф., Кулабухов С.Ю., 2022
- ЕГЭ 2022, Математика, Типовые тестовые задания, Ященко И.В., Волчкевич М.А., Высоцкий И.Р., Гордин Р.К.
- Математика, ЕГЭ, Сборник заданий, Методическое пособие для подготовки к экзамену, Глазков Ю.А., Корешкова Т.А., Мирошин В.В., Шевелева Н.В., 2022
- Математика в таблицах и схемах, Пособие для подготовки к ЕГЭ, Беляевская С.Н., 2022
Предыдущие статьи:
- Геометрия, Задачи на готовых чертежах для подготовки к ГИА и ЕГЭ, 7-9 класс, Балаян Э.Н., 2022
- 800 лучших олимпиадных задач по математике для подготовки к ЕГЭ, 9-11 класс, Балаян Э.Н., 2022
- ЕГЭ-2022, Математика, Самое полное издание типовых вариантов заданий, Ященко И.В., Высоцкий И.Р., 2022
- Математика, Подготовка к ЕГЭ в 2022 году, Диагностические работы, Высоцкий И.Р., Семенов А.В., Ященко И.В.
Решение реального егэ-2022 по математике (06.06.2022). профильный уровень условия тестов
Подробные решения контрольных измерительных материалов Единого государственного экзамена по МАТЕМАТИКЕ от 06.06.2022. Профильный уровень. Основная волна
Условия КИМов реального ЕГЭ 2022 по математике (тип 1)
Часть 1
1. В квартире установлен прибор учёта расхода холодной воды (счётчик). Показания счётчика 1 сентября составляли 103 куб, м воды, а 1 октября — 114 куб. м. Сколько нужно заплатить за холодную воду за сентябрь, если стоимость 1 куб, м холодной воды составляет 19 руб. 20 коп.? Ответ дайте в рублях.
2. На диаграмме показано количество посетителей сайта РИА Новости во все дни с 10 по 29 ноября 2009 года. По горизонтали указываются дни месяца, по вертикали — количество посетителей сайта за данный день. Определите по диаграмме, во сколько раз наибольшее количество посетителей больше, чем наименьшее количество посетителей за день.
3. Найдите площадь треугольника, изображенного на рисунке.
4. В соревнованиях по толканию ядра участвуют 8 спортсменов из Великобритании, 6 спортсменов из Франции, 5 спортсменов из Германии и 5 — из Италии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий последним, окажется из Франции.
5. Наидите корень уравнения:
4. В соревнованиях по толканию ядра участвуют 8 спортсменов из Великобритании, 6 спортсменов из Франции, 5 спортсменов из Германии и 5 — из Италии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий последним, окажется из Франции.
5. Наидите корень уравнения: .
6. В четырехугольник , периметр которого равен 48 вписана окружность,
. Найдите
.
7. На рисунке изображён график
7. На рисунке изображён график производной функции
, определенной на интервале (-10; 2). Найдите количество точек, в которых касательная к графику функции
параллельна прямой
или совпадает с ней.
8. Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.
8. Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.
Часть 2
9. Найдите значение выражений .
10. Груз массой 0,8 кг колеблется на пружине. Его скорость меняется по закону
. где
— время с момента начала колебаний,
— период колебаний,
м/с. Кинетическая энергия
(в джоулях) груза вычисляется по формуле
, где
— масса груза в килограммах,
— скорость груза в м/с.
Найдите кинетическую энергию груза через 10 секунд после начала колебаний. Ответ дайте в джоулях
11. Шесть одинаковых рубашек дешевле куртки на 2%. На сколько процентов девять таких же рубашек дороже куртки?
12. Найдите точку минимума функции
Тип 1
13. а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку .
14. В правильной треугольной призме сторона основания
равна 6, а боковое ребро
равно 3 . На ребре
отмечена точка
так, что
. Точки
и
— середины ребер
и
соответственно. Плоскость
параллельна прямой
и содержит точки
и
.
а) Докажите, что прямая перпендикулярна плоскости
;
б) Найдите объем пирамиды, вершина которой — точка , а основание — сечение данной призмы плоскостью
.
15. Решите неравенство:
16. В трапеции боковая сторона
перпендикулярна основаниям. Из точки
на сторону
опустили перпендикуляр
. На стороне
отмечена точка
так, что прямые
и
перпендикулярны.
а) Докажите, что прямые и
параллельны.
б) Найдите отношение , если угол
.
17. 15-го января планируется взять кредит в банке на сумму 1 млн рублей на 6 месяцев. Условия его возврата таковы:
— 1-го числа каждого месяца долг возрастает на целое число процентов по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Найдите наименьшее значение , при котором общая сумма выплат будет составлять более 1,25 млн рублей.
18. Найдите все значения параметра , при каждом из которых уравнение
имеет ровно три различных решения
19. На доске написаны числа 1, 2, 3, …,30. За один ход разрешается стереть произвольные три числа, сумма которых меньше 35 и отлична от каждой из сумм троек числа, стёртых на предыдущих ходах.
а) Приведите пример последовательности 5 ходов, б (Можно ли сделать 10 ходов?
в) Какое наибольшее число ходов можно сделать?
Подробные решения КИМов ЕГЭ №№1-12 и №№13-19(тип 1)
Условия КИМов основного ЕГЭ 2022 по математике (тип 2)
13. а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие промежутку
14. В правильной четырехугольной пирамиде сторона основания
равна 16, а высота равна 4. На ребрах
и
отмечены точки
и
соответственно, причем
и
.
а) Докажите, что плоскости и
параллельны.
б) Найдите расстояние от точки до плоскости
.
15. Решите неравенство
16. В трапеции точка
— середина основания
, точка
— середина боковой стороны
. Отрезки
и
пересекаются в точке
.
а) Докажите, что площади четырехугольника и треугольника
равны
б) Найдите, какую часть от площади трапеции составляет площадь четырехугольника , если
17. В июле 2022 года планируется взять кредит в банке на млн рублей, где
— целое число, на 4 года. Условия его возврата таковы:
— каждый январь долг возрастает на 15% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей
Найдите наибольшее значение , чтобы общая сумма выплат была меньше 50 млн рублей?
18. Найдите все значения , при каждом из которых уравнение
имеет единственный корень.
19. На доске написаны числа 2 и 3. За один ход разрешено заменить написанные на доске числа и
числами
и
(например, из чисел 2 и 3 можно получить либо 3 и 5, либо 5 и 5).
а) Может ли после нескольких ходов на доска появиться число 19?
б) может ли через 100 ходов на доске быть написано число 200?
в) укажите наименьшую разность чисел через 1007 ходов.
Условия КИМов основного ЕГЭ 2022 по математике (тип 3)
13. а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие промежутку
14. В правильной треугольной призме сторона основания
равна 6, а боковое ребро
равно 3. На ребре
отмечена точка
так, что
. Точки
и
— середины ребер
и
соответственно. Плоскость у параллельна прямой
и содержит точки
и
.
а) Докажите, что прямая перпендикулярна плоскости
.
б) Найдите расстояние от точки до плоскости
.
15. Решите неравенство
16. В треугольнике проведены высоты
и
. На них из точек
и
опущены перпендикуляры
и
соответственно
а) Докажите, что прямые и
параллельны.
б) Найдите отношение , если угол
равен
.
17. 15-го января планируется взять кредит в банке на 1 млн рублей на 6 месяцев. Условия его возврата таковы:
-1-го числа каждого месяца долг возрастает на целое число процентов по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей
Найдите наибольшее значение , при котором общая сумма выплат будет составлять менее 1,2 млн. рублей.
18. Найдите все значения , при каждом из которых уравнение
имеет ровно три различных решения.
Подробные решения КИМов ЕГЭ №№13-19(тип 2 и 3)
Условия КИМов основного ЕГЭ 2022 по математике (тип 4)
13. а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие промежутку
14. В правильной треугольной пирамиде сторона основания
равна 12, а высота равна 1. На ребрах
и
отмечены точки
и
соответственно, причем
и
а) Докажите, что плоскости и
параллельны.
б) Найдите расстояние от точки до плоскости
.
15. Решите неравенство .
16. Один из двух отрезков, соединяющих середины противоположных сторон четырехугольника, делит его площадь пополам, а другой в отношении 11:17
а) Докажите, что данный четырехугольник — трапеция
б) Найдите отношение оснований этой трапеции
17. В июле 2022 года планируется взять кредит в банке на млн рублей, где
— целое число, на 4 года. Условия его возврата таковы:
— каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей
Найдите наименьшее значение , чтобы общая сумма выплат была больше 10 млн рублей?
18. Найдите все значения , при каждом из которых уравнение
имеет единственный корень.
Подробные решения КИМов ЕГЭ №№13-19(тип 4)