Второй вариант
Мы решили 9 задание по математике профилю наиболее простым способом. Однако вычисления получится сократить. Построим локальную систему координат около вершины параболы:
Видим особенность параболы: в точке «1» ордината равна 1, в точке «2» — 4. Представленный график отражает классическое выражение: y = x2, сдвинутое в системе координат. Известно: преобразования не меняют старший коэффициент. Делаем вывод, “a” равно “1”.
Теперь найдем “b”. Используем выражение вершины параболы: x0 = -b / 2a. По рисунку видно: x0 = -4. Поставляя это число, найденное значение “a”, находим: b = 8. Дальнейшее решение требует одного уравнения из первого способа. Теперь выполнить номер проще.
Как решать 9 задание егэ 2022 математика профиль видео теория:
1)На рисунке изображён график функции вида f(x)= a3x b x c , где числа a, b и c — целые. Найдите a.
2)На рисунке изображён график функции вида f(x)= 2ax b x c , где числа a, b и c — целые. Найдите a.
3)На рисунке изображён график функции вида f(x)= ax b x c , где числа a, b и c — целые. Найдите a.
4)На рисунке изображён график функции вида f(x)= a x b c, где числа a, b и c — целые. Найдите f(−22).
5)На рисунке изображён график функции вида f(x)= a x b c, где числа a, b и c — целые. Найдите решение уравнения f(x)=18.
6)На рисунке изображён график функции вида f(x)= 2ax b x c , где числа a, b и c — целые. Найдите a.
7)На рисунке изображён график функции вида f(x)= a x b c, где числа a, b и c — целые. Найдите f(15).
8)На рисунке изображён график функции вида f(x)= a x b c, где числа a, b и c — целые. Найдите x, при котором f(x)=21.
9)На рисунке изображён график функции вида f(x)=log5(ax b) c, где числа a, b, c — целые. Найдите наибольшее значение функции g(x)=−x2 ax b.
10)На рисунке изображён график функции вида f(x)=log1.4(x−a) b, где числа a, b — целые. Найдите ab.
11)На рисунке изображён график функции вида f(x)=2ax b, где числа a, b — целые. Найдите сумму коэффициентов a b, если f(1)=10.
12)На рисунке изображён график функции вида f(x)=log2(ax b) 2, где числа a, b — целые. Найдите сумму коэффициентов a b.
13)На рисунке изображён график функции вида f(x)=ln(a x) b, где числа a, b — целые. Найдите сумму коэффициентов a b, если A(0;ln2e).
Первый вариант
Начнем с простого способа, не требующего глубокого понимания темы. Условие выглядит следующим образом:
Присмотревшись к картинке задания 9 по профильной математике, видим: график содержит целочисленные точки. Отметим их на изображении (экзамен разрешает использовать текст КИМа). Решение требует минимум три точки:
Видим: в точке «-4» ордината равна «-3». Запишем уравнение, подставив значения значения абсциссы и ординаты:
16a — 4b c = -3
Аналогичным образом записываем выражение, используя две остальные точки:
9a — 3b c = -2
4a — 2b c = 1
Получаем систему трех уравнений с тремя неизвестными. Решить достаточно легко. Простейший вариант: вычесть последнюю строчку из первых двух, избавившись от коэффициента “c”. После первое уравнение сокращаем на «2», вычитаем из него второе. Находим: a = 1. Подставляем далее, получаем:
b = 8;
c = 13.
Имея коэффициенты, переписываем уравнение, подставляем значение абсциссы:
f(x) = x2 8x 13
f(-12) = 144 — 96 13 = 61
Поделиться
Решу ЕГЭ 2022 задание №9 по математике 11 класс профильный уровень с ответами и решением для практики и подготовки к экзамену.
Решу егэ
Пусть км/ч — скорость первого автомобиля, тогда скорость второго автомобиля на первой половине пути равна км/ч. Примем расстояние между пунктами за 2. Автомобили были в пути одно и то же время, отсюда имеем:
Таким образом, скорость первого автомобиля была равна 52 км/ч.
Ответ: 52.
Примечание.
По условию, оба автомобиля проехали одинаковое расстояние за одно и то же время, а значит, средние скорости их движения равны. Поэтому из приведенного решения следует, что средняя скорость второго автомобиля равна 52 км/ч, его скорость на первой половине пути составляет 52 − 13 = 39 км/ч, а скорость на второй половине пути — 78 км/ч. Невнимательный читатель мог бы решить, что в решении ошибка, поскольку Однако противоречия нет.
Первую половину пути автомобиль ехал с меньшей скоростью, значит, он затратил на первую половину пути больше времени, чем на вторую. Поэтому среднюю скорость нельзя находить по формуле Пусть половина пути между пунктами А и В равна х км, тогда для прохождения первой половины пути второму автомобилю потребовалось часов, для прохождения второй половины пути часов, а всего часов. Тогда средняя скорость второго автомобиля составит
км/ч,
то есть действительно будет равна скорости первого автомобиля.
Решу егэ 2022 тригонометрические функции 9 задание профиль математика с ответами:
Как формулируется новое задание 9 ЕГЭ 2022 по математике? По графику функции, который дается в условии, вам нужно определить неизвестные параметры в ее формуле. Возможно — найти значение функции в некоторой точке или координаты точки пересечения графиков функций.
Третий вариант
9 задание по математике профильного уровня реально упростить еще сильнее. Изучим способ образования данной параболы. Она получилась путем смещения исходной на “4” налево и на “3” вниз. Запишем уравнения. Изначальный пример:
y = x2
Сдвиг влево записывается:
y = (x 4)2
Сдвиг вниз:
y = (x 4)2 — 3
Получаем готовое уравнение, достаточно подставить “-12”. Ответ аналогичный: 61.
Четвертый вариант
Рассмотрим последний способ выполнения задания 9 по профильной математике 2022, требующий логического мышления. Снова изучим локальную систему координат:
Сравнивая с изначальной, получим: абсцисса «-12» из условия представляет собой значение «-8» локальной системы. Это связано со сдвигом. Ордината соответственно равна “64”. Не забываем: парабола сдвинута также на три пункта вниз. Получается, итоговое значение будет на 3 меньше найденного. Ответ снова 61!
В статье мы разобрали способы решения нового 9 задания из ЕГЭ по математике. Хотите изучить принципы выполнения остальных номеров? Записывайтесь на курсы «Уникум» Российского университета дружбы народов. Обучение проходит под руководством опытных преподавателей, форматы — очный, дистанционный. Для закрепления материала существует учебный портал Unikum.
Содержание данной статьи носит ознакомительный характер. При подготовке к сдаче ЕГЭ пользуйтесь дополнительными источниками информации!