Как подготовиться к решению заданий ЕГЭ № 16 по планиметрии | 1С:Репетитор

Как подготовиться к решению заданий ЕГЭ № 16 по планиметрии | 1С:Репетитор ЕГЭ

Биссектриса

Биссектриса – это линия, которая делит угол пополам.

Свойства биссектрисы:

1. В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.

2. Если точка лежит на биссектрисе, то расстояния от неё до сторон угла равны.

$AD=DC$

3. Три биссектрисы в треугольнике пересекаются в одной точке, эта точка является центром вписанной в треугольник окружности.

4. Биссектриса угла в параллелограмме отсекает равнобедренный треугольник.

5. Биссектрисы смежных углов перпендикулярны.

6. В треугольнике биссектриса угла делит противоположную сторону на отрезки, отношение которых такое же, как отношение сторон треугольника, между которыми эта биссектриса прошла.

${AB}/{AC}={BA_1}/{A_1C}$

7. Для нахождения длины биссектрисы справедлива формула:

$АА_1=√{АВ·АС-ВА_1·А_1 С}$

Вневписанные окружности

Вневписанной окружностью треугольника называется окружность, касающаяся одной из его сторон и продолжений двух других.

Для каждого треугольника существует три вневписанных окружности, которые расположены вне треугольника, центрами вневписанных окружностей являются точки пересечения биссектрис внешних углов треугольника.

Точки $О_1, О_2$ и $О_3$ – центры вневписанных окружностей.

Связь площади треугольника с радиусами вневписанных окружностей.

Введем обозначения:

$S$ — площадь треугольника;

$p$ — полупериметр треугольника;

$a, b, c$ — стороны треугольника;

$r_a, r_b, r_c$ — радиусы вневписанных окружностей касающиеся соответственно сторон $a, b$ и $c$;

Для данных обозначений справедливы равенства:

$r_a={S}/{p-a};$

$r_b={S}/{p-b};$

$r_c={S}/{p-c}.$

Пример:

В прямоугольном треугольнике $АВС$ угол $С=90°, АС=6, ВС=8$. Найдите радиус вневписанной окружности, касающейся гипотенузы.

Решение:

Радиус вневписанной окружности, касающейся стороны $АВ$ равен:

$r_{АВ}={S}/{p-АВ}$, где $S$ — площадь треугольника, $р$ — полупериметр треугольника.

Чтобы подставить в формулу данные, найдем сначала площадь треугольника и его полупериметр.

Площадь прямоугольного треугольника равна половине произведения катетов:

$S={АС·АВ}/{2}={6·8}/{2}=24$

Нам неизвестна гипотенуза, найдем ее по теореме Пифагора:

$АВ=√{АС^2 СВ^2}=√{6^2 8^2}=√{100}=10$

Зная все стороны, вычислим полупериметр:

$р={6 8 10}/{2}=12$

Теперь можем все данные подставить в формулу нахождения радиуса вневписанной окружности:

$r_{АВ}={S}/{p-АВ}={24}/{12-10}={24}/{2}=12$

Ответ: $12$

Высота

Высота в треугольнике — это линия, проведенная из вершины треугольника к противоположной стороне под углом в 90 градусов.

$BB_1$ — высота

Свойства высот:

1. Три высоты (или их продолжения) пересекаются в одной точке.

2. При пересечении двух высот получаются подобные треугольники:

$∆АА_1 В~∆СС_1В;$

$∆АС_1 М~∆СМА1$

3. Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.

4. Высоты треугольника обратно пропорциональны его сторонам:

$h_a:h_b:h_c={1}/{a}:{1}/{b}:{1}/{c}$

Задача № 16 по планиметрии – объективно одна из самых трудных.

Задача № 16 по планиметрии, которую включает вариант КИМ ЕГЭ по математике профильного уровня, – объективно одна из самых трудных, если не самая сложная для абитуриентов. Дело в том, что в обычной (не профильной или специализированной) школе планиметрию изучают только в 7–9-х классах, на эту дисциплину отводится два урока в неделю, что совершенно недостаточно для того, чтобы хорошо изучить свойства фигур планиметрии и научиться применять их при решении задач.

Про ЕГЭ:  Теория для ЕГЭ по математике профильного уровня

Кроме того, каждая задача по геометрии уникальна по своему содержанию, поэтому для решения таких задач практически неприменим алгоритмический подход, который является весьма успешным при решении задач по алгебре, в результате многие школьники даже не пытаются решать геометрические задачи. Все это приводит к тому, что и сравнительно несложная задача по планиметрии становится непосильной для выпускников школ.

Ситуацию можно исправить, но потребуется немало сил и времени и, конечно, хорошая методика подготовки. Наша методика основана на концепции известного отечественного методолога и методиста, специалиста по преподаванию геометрии И.Ф. Шарыгина. Суть концепции, которую сам автор называл «геометрией фигуры», заключается в том, что в учебных материалах последовательно разбираются свойства геометрических фигур и их элементов (замечательных линий и точек), начиная от прямоугольного треугольника и заканчивая комбинациями многоугольников и окружностей, причем внимание акцентируется именно на решении задач.

Конечно, для решения геометрических задач большое значение имеет хорошее знание теории, поэтому в наших материалах много кратких видеолекций, суммирующих необходимые теоретические знания . Обучая теории, мы сразу же разбираем опорные задачи, в которых она применяется, осваиваем специальные приемы решения задач – например метод проекций, метод площадей, метод вспомогательной окружности и т. д.

После изучения теории нужно браться за самостоятельное решение задач. При этом можно выбрать приемлемую траекторию продвижения по системе задач. Для менее подготовленных школьников мы рекомендуем решать задачи «по фигурам», то есть в следующем порядке.

Сначала – прямоугольный треугольник, медиана в прямоугольном треугольнике, биссектриса в прямоугольном треугольнике, высота в прямоугольном треугольнике . Затем переходим к равнобедренному и произвольному треугольникам, параллелограмму, трапеции и т. д.

Для более сильных школьников предлагается другой путь – систематизация и обобщение свойств геометрических фигур и их элементов.


Прямоугольный треугольник, произвольный треугольник (теорема синусов, теорема косинусов, площади), медиана в прямоугольном треугольнике, медиана в равнобедренном и произвольном треугольнике и т. д.

Описанный подход позволяет нашим ученикам актуализировать свои школьные знания, обобщить и углубить их, систематически сочетая изучение теории с практикой ее применения. Большую помощь в решении задач оказывают пошаговые тренажеры: в геометрической задаче, ход решения которой может быть неочевиден с самого начала, тренажер позволяет сориентироваться в шагах решения, проверить промежуточные вычисления на каждом шаге и обосновать сами шаги нужной теоремой или свойством.

Квадрат

$S=a^2$, где $а$ — сторона квадрата.

Медиана

Медиана — это линия, проведенная из вершины треугольника к середине противоположной стороны.

Свойства медиан:

1. Медиана делит треугольник на два равновеликих треугольника, т.е. на два треугольника, у которых площади равны.

$S_1=S_2$

2. Медианы пересекаются в одной точке и этой точкой делятся в отношении два к одному, считая от вершины.

Про ЕГЭ:  я лучше всех я умнее всех сочинение

3. В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы и радиусу описанной около этого треугольника окружности.

4. Для нахождения длины медианы, проведенной к стороне «с», справедлива формула:

$М_с={√{2(а^2 b^2)-c^2}}/{2}$

Метрические соотношения в окружности

1. Две касательные, проведенные к окружности из одной точки, равны, и центр окружности лежит на биссектрисе угла между ними.

2. Если хорды $АС$ и $BD$ пересекаются в некоторой точке $N$, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

$AN·NC=BN·ND$

3. Если из одной точки к одной окружности проведены две секущие, то произведение первой секущей на ее внешнюю часть равно произведению второй секущей на свою внешнюю часть.

$АС·ВС=EC·DC$

4. Если из одной точки к окружности проведены секущая и касательная, то произведение секущей на ее внешнюю часть равно квадрату длины касательной.

$BD·СB=AB^2$

Вписанные и описанные окружности для четырехугольников.

1. Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

$АВ CD=BC AD$

2. Если сумма противоположных углов четырехугольника равна $180°$, то только тогда около него можно описать окружность.

$∠В ∠D=180°$

$∠A ∠C=180°$

Параллелограмм

$S=a·b·sinα$, где $а$ и $b$ — длины сторон параллелограмма, а $α$ — угол между этими сторонами.

Площадь треугольника

  1. $S={a·h_a}/{2}$, где $h_a$ — высота, проведенная к стороне $а$
  2. $S={a·b·sin⁡α}/{2}$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
  3. Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ — это полупериметр $p={a b c}/{2}$
  4. $S=p·r$, где $r$ — радиус вписанной окружности
  5. $S={a·b·c}/{4R}$, где $R$ — радиус описанной окружности
  6. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ — катеты прямоугольного треугольника.
  7. Для равностороннего треугольника $S={a^2 √3}/{4}$, где $а$ — длина стороны.

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ — коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Признаки подобия треугольников:

  1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
  2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
  3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Пример задачи № 16 по планиметрии:

Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что ∠BAC =∠OBC ∠OCB.

  1. Докажите, что точка I лежит на окружности, описанной около треугольника BOC.
  2. Найдите угол OIH, если ∠ABC =55°.

Пропорциональные отрезки в прямоугольном треугольнике

В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:

Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.

Про ЕГЭ:  ЕГЭ-2020 по русскому языку, задание 7: теория с комментариями, практика, изменения ФИПИ, ответы – Российский учебник

$CD^2=DB·AD$

В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.

$CB^2=AB·DB$

$AC^2=AB·AD$

Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.

$AC·CB=AB·CD$

Прямоугольник

$S=a·b$, где $а$ и $b$ — смежные стороны.

Регулярно тренируйтесь в решении задач

Чтобы начать заниматься на портале «1С:Репетитор», достаточно зарегистрироваться.Вы можете:


Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.

Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.

Решение:

  1. Посмотрим на чертеж. Если нам предлагают доказать, что четыре точки лежат на одной окружности, то согласно теореме об угле, вписанном в окружность, и следствиям из нее, нужно либо поискать на чертеже 1 равные углы, опирающиеся на один и тот же отрезок (хорду) и расположенные по одну сторону от него, либо углы, сумма которых равна 180° и которые также опираются на один и тот же отрезок, но расположены по разные стороны от него. В нашем случае подходит первый вариант.
  2. Итак, во-первых, по теореме об угле, вписанном в окружность, ∠BAC =∠OBC ∠OCB=12∠BOC,

    но ∠OBC ∠OCB ∠BOC=180°,

    то есть ∠BOC 12∠BOC=180°⇔∠BOC=120°⇒∠BAC=60°

  3. Во-вторых, находим угол между двумя биссектрисами. В нашем случае ∠BIC=90° 12∠BAC=120°.
    Этот факт мы доказываем в своем курсе, чтобы на экзамене вы могли без труда им воспользоваться.
  4. Итого, ∠BOC=∠BIC=120°, следовательно точка I лежит на окружности, описанной около треугольника BOC.

  5. Прежде всего найдем все углы треугольника ABC: ∠BAC =60°, ∠ABC =55°, ∠ACB =65°.
  6. Затем подумаем вот о чем: а не лежит ли точка H на окружности, описанной около треугольника BOC? И это действительно так: обсуждая в нашем курсе свойства высот треугольника, мы обращаем внимание учащихся на тот факт, что угол между высотами – в данном случае ∠BHC =180°-∠BAC=120°, то есть наша догадка верна.
  7. Теперь осталось правильно расположить точки B, H, I,O, C на окружности (чертеж 2) и вычислить угол OIH. Например, так:
    ∠OIH=180°-∠HCO,
    ∠HBO=∠HCB-∠OCB,
    ∠HCB=90°-∠ABC=35°,
    ∠OCB=30° ⇒ ∠HBO= ∠HCB — ∠OCB =5° ⇒ ∠OIH=175° — Вот и ответ.

Оценить свои стартовые знания по планиметрии вы можете с помощью заданий с кратким ответом: №3 и №6 . Если возникнут затруднения, воспользуйтесь подсказками: они помогут справиться с решением. Если же эти задачи вы решаете легко, то приступайте к более сложным (и более увлекательным) задачам по планиметрии.

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$a^2=b^2 c^2-2·b·c·cosα.$

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

${a}/{sin⁡α}={b}/{sinβ} ={c}/{sinγ} =2R$, где $R$ — радиус описанной около треугольника окружности.

Трапеция

$S={(a b)·h}/{2}$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.

Оцените статью
ЕГЭ Live