Другие тренировочные варианты статград егэ по математике 11 класс:
Работы СТАТГРАД по математике задания и ответы
Варианты МА2110401-МА2110412 ЕГЭ 2022 работа статград математика 11 класс с ответами
Метки: ЕГЭ 2022заданияматематика 11 классответыстатградтренировочная работа
Сложные задания с варианта ма2100109:
2)В среднем из 2000 садовых насосов, поступивших в продажу, 12 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.
Правильный ответ: 0,99
5)Стороны основания правильной четырёхугольной пирамиды равны 24, боковые рёбра равны 37. Найдите площадь поверхности этой пирамиды.
Правильный ответ: 2256
8)Имеется два сплава. Первый содержит 10 % никеля, второй — 35 % никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Правильный ответ: 35
10)Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,3. Шахматисты А. и Б. играют две партии, причём во второй партии играют фигурами другого цвета. Найдите вероятность того, что А. выиграет оба раза.
Правильный ответ: 0,15
13)Точка S лежит вне плоскости прямоугольника АВСD . Известно, что АВ = 8, ВС =12 , SA = 6 , SB =10 , SD = 6 5 . а) Докажите, что прямая SA перпендикулярна плоскости АВС . б) Найдите расстояние от точки А до плоскости SCB.
15)В июле 2022 года планируется взять кредит в банке на четыре года в размере S млн рублей, где S — целое число. Условия его возврата таковы: — каждый январь долг увеличивается на 15 % по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить одним платежом часть долга; — в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей. Найдите наибольшее значение S , при котором каждая из выплат будет меньше 3 млн рублей.
16)Дан треугольник АВС. Точка О — центр вписанной в него окружности. На стороне ВС отмечена такая точка M , что СM = АС и ВM = АО. а) Докажите, что прямые АВ и ОM параллельны. б) Найдите площадь четырёхугольника АВMО, если угол AСB прямой и АС = 4.
18)Юра записывает на доске n-значное натуральное число, не используя цифру 0. Затем он записывает рядом ещё одно число, полученное из исходного перемещением первой цифры на последнее место. (Например, если n =3 и исходное число равно 123, то второе число равно 231.)
После этого Юра находит сумму этих двух чисел. а) Может ли сумма чисел на доске равняться 2728, если n = 4? б) Может ли сумма чисел на доске равняться 83 347, если n =5? в) При n =6 оказалось, что сумма чисел делится на 99. Сколько натуральных чисел от 925 111 до 925 999, которые Юра мог использовать в качестве исходного числа?
Сложные задания с ма2110201 варианта:
2)Установка двух счётчиков воды (холодной и горячей) стоит 3500 рублей. До установки счётчиков за воду платили 1100 рублей ежемесячно. После установки счётчиков ежемесячная оплата воды стала составлять 900 рублей. Через какое наименьшее количество месяцев экономия по оплате воды превысит затраты на установку счётчиков, если тарифы на воду не изменятся?
3)Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.
4)Результаты соревнований по метанию молота представлены в таблице. Места распределяются по результату лучшей попытки каждого спортсмена: чем дальше он метнул молот, тем лучше. Какое место занял спортсмен Минаков?
5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, изображённого на плане. Ответ дайте в квадратных метрах.
6)Магазин детских товаров закупает погремушки по оптовой цене 110 рублей за одну штуку и продаёт с наценкой 30 %. Сколько рублей будут стоить 4 такие погремушки, купленные в этом магазине?
10)Какой наименьший угол (в градусах) образуют минутная и часовая стрелки часов в 8:00?
11)На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,25. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
12)На соревнованиях по прыжкам в воду судьи выставили оценки от 0 до 10 трём спортсменам. Результаты приведены в таблице. Итоговый балл вычисляется следующим образом: две наибольшие и две наименьшие оценки отбрасываются, а три оставшиеся складываются, и их сумма умножается на коэффициент сложности.
13)Даны две коробки, имеющие форму правильной четырёхугольной призмы, стоящей на основании. Первая коробка в полтора раза ниже второй, а вторая вдвое шире первой. Во сколько раз объём второй коробки больше объёма первой?
16)Сторона основания правильной шестиугольной пирамиды равна 22, боковое ребро равно 61. Найдите площадь боковой поверхности этой пирамиды.
18)Некоторые учащиеся школы съели за завтраком булочку с рисом. Некоторые учащиеся этой школы на обед получат пирожок, причём среди них не будет тех, кто съел за завтраком булочку. Выберите все утверждения, которые будут верны при указанных условиях независимо от того, кому достанутся пирожки. 1)
Нет ни одного учащегося этой школы, который съел булочку за завтраком и получит пирожок на обед. 2) Найдётся учащийся, который не съел булочку за завтраком и не получит пирожок на обед. 3) Каждый учащийся, который не съел булочку за завтраком, получит пирожок на обед. 4)
19)Найдите четырёхзначное число, кратное 24, произведение цифр которого равно 16. В ответе запишите запишите какое-нибудь одно такое число.
20)Два человека отправляются из одного дома на прогулку до опушки леса, находящейся в 5,5 км от дома. Один идёт со скоростью 2,5 км/ч, а другой — со скоростью 3 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от дома произойдёт их встреча? Ответ дайте в километрах.
21)Улитка за день заползает вверх по дереву на 3 м, а за ночь сползает на 1 м. Высота дерева равна 13 м. За сколько дней улитка доползёт до вершины дерева, начав путь от его основания?
Сложные задания с ма2110205 варианта:
2)В квартире установлен прибор учёта расхода горячей воды (счётчик). Показания счётчика 1 июля составляли 77,2 куб. м воды, а 1 августа — 79,7 куб. м. Сколько нужно заплатить за горячую воду за июль, если стоимость 1 куб. м горячей воды составляет 144 руб. 80 коп.? Ответ дайте в рублях.
3)Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.
4)Результаты игры КВН представлены в таблице. Для каждой команды баллы по всем конкурсам суммируются. Победителем считается команда, набравшая в сумме наибольшее количество баллов. Сколько в сумме баллов у команды-победителя?
6)Тетрадь стоит 18 рублей. Сколько рублей заплатит покупатель за 30 тетрадей, если при покупке более 20 тетрадей магазин делает скидку 5 % от стоимости всей покупки?
10)Колесо имеет 18 спиц. Углы между соседними спицами равны. Найдите величину угла (в градусах), который образуют две соседние спицы.
11)На борту самолёта 27 мест рядом с запасными выходами и 17 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир З. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру З. достанется удобное место, если всего в самолёте 400 мест.
12)В трёх салонах сотовой связи один и тот же смартфон продаётся в кредит на разных условиях. Условия приведены в таблице. Определите, в каком из салонов покупка обойдётся дешевле всего (с учётом переплаты). В ответе запишите стоимость этой покупки в рублях.
13)Вода в сосуде, имеющем форму правильной четырёхугольной призмы, находится на уровне h = 120 см. На каком уровне окажется вода, если её перелить в другой сосуд, имеющий форму правильной четырёхугольной призмы, у которого сторона основания вдвое больше, чем у данного? Ответ дайте в сантиметрах.
16)Сторона основания правильной шестиугольной пирамиды равна 14, боковое ребро равно 25. Найдите площадь боковой поверхности этой пирамиды.
18)Некоторые учащиеся 10-х классов школы зимой ездили на экскурсию в Суздаль. Весной некоторые десятиклассники поедут в Кострому, причём среди них не будет тех, кто ездил зимой в Суздаль. Выберите все утверждения, которые будут верны при указанных условиях независимо от того, кто из десятиклассников поедет в Кострому. 1)
Среди учащихся 10-х классов этой школы, которые не поедут в Кострому, есть хотя бы один, который ездил на экскурсию в Суздаль. 2) Найдётся десятиклассник, который не ездил на экскурсию в Суздаль и не поедет в Кострому. 3) Нет ни одного десятиклассника, который ездил на экскурсию в Суздаль и поедет в Кострому. 4) Каждый десятиклассник, который не был на экскурсии в Суздале, поедет в Кострому.
19)Найдите четырёхзначное число, кратное 12, произведение цифр которого больше 25, но меньше 30. В ответе запишите какое-нибудь одно такое число.
20)Толя и Саша выполняют одинаковый тест. Толя отвечает за час на 12 вопросов теста, а Саша — на 17. Они одновременно начали отвечать на вопросы теста, и Толя закончил свой тест позже Саши на 50 минут. Сколько вопросов содержит тест?
21)Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок, делая первый прыжок из начала координат. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, совершив 8 прыжков?