Решение Ященко ЕГЭ 2022 (база) Вариант №7 (30 вариантов) Математика

Решение Ященко ЕГЭ 2022 (база) Вариант №7 (30 вариантов) Математика ЕГЭ

Задания и ответы с варианта базового уровня

2)Каждый день во время конференции расходуется 90 пакетиков чая. Конференция длится 8 дней. В пачке чая 50 пакетиков. Какого наименьшего количества пачек чая хватит на все дни конференции?

Ответ: 15

4)На диаграмме показано количество посетителей сайта РИА «Новости» в течение каждого часа 8 декабря 2009 года. По горизонтали указывается время (в часах), по вертикали — количество посетителей сайта на протяжении этого часа. Определите по диаграмме, в течение какого часа на сайте РИА «Новости» побывало максимальное количество посетителей.

Ответ: 13

5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, выделенного на плане. Ответ дайте в квадратных метрах.

Ответ: 10,5

6)Держатели дисконтной карты книжного магазина получают при покупке скидку 10 %. Книга стоит 230 рублей. Сколько рублей заплатит держатель дисконтной карты за эту книгу?

Ответ: 207

10)Диагональ прямоугольного экрана телевизора равна 50 см, а ширина экрана — 40 см. Найдите высоту экрана. Ответ дайте в сантиметрах.

Ответ: 30

11)Вероятность того, что стекло мобильного телефона разобьётся при падении на твёрдую поверхность, равна 0,84. Найдите вероятность того, что при падении на твёрдую поверхность стекло мобильного телефона не разобьётся.

Ответ: 0,16

12)Сергей Петрович хочет купить в интернет-магазине микроволновую печь определённой модели. В таблице показано 6 предложений от разных интернет-магазинов. Сергей Петрович считает, что покупку нужно делать в магазине, рейтинг которого не ниже 4.

Ответ: 3

13)Плоскость, проходящая через точки A, B и C (см. рис.), разбивает правильную треугольную призму на два многогранника. Сколько вершин у получившегося многогранника с меньшим числом граней?

Ответ: 6

15)В треугольнике ABC известно, что AB=BC=25, AC=14. Найдите площадь треугольника ABC.

Ответ: 168

16)Объём конуса равен 25π, а его высота равна 3. Найдите радиус основания конуса.

Ответ: 5

18)В некоторый момент температура воздуха в Москве была равна 3 °С. В этот же момент в Архангельске было на 4 °С холоднее, чем в Москве, а в Махачкале на 3 °С теплее, чем в Москве. Выберите все утверждения, которые были верны в этот момент при указанных условиях.

  • 1) В Москве было теплее, чем в Махачкале.
  • 2) В любом городе, помимо указанных, в котором было теплее, чем в Архангельске, также было теплее, чем в Москве.
  • 3) В любом городе, помимо указанных, в котором было теплее, чем в Махачкале, также было теплее, чем в Москве.
  • 4) В Махачкале было теплее, чем в Архангельске.

Ответ: 34

19)Найдите четырёхзначное число, кратное 15, произведение цифр которого больше 0, но меньше 25. В ответе укажите какое-нибудь одно такое число.

Ответ: 1125

20)Смешали некоторое количество 20-процентного раствора некоторого вещества с таким же количеством 14-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Ответ: 17

21)Если бы каждый из двух множителей увеличили на 1, то их произведение увеличилось бы на 11. На сколько увеличится произведение этих множителей, если каждый из них увеличить на 2?

Ответ: 24

Задания и ответы с варианта профильного уровня

2)На чемпионате по прыжкам в воду выступают 20 спортсменов, среди них 3 прыгуна из Голландии и 4 прыгуна из Колумбии. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что восьмым будет выступать прыгун из Голландии.

Ответ: 0,15

3)Четырёхугольник ABCD вписан в окружность. Угол ABC равен 82°, угол ABD равен 47°. Найдите угол CAD. Ответ дайте в градусах.

Ответ: 35

4)Найдите значение выражения log2 24 − log2 0,75.

Ответ: 5

5)В цилиндрический сосуд, в котором находится 10 дм3 воды, опустили деталь. При этом уровень жидкости в сосуде поднялся в 1,6 раза. Чему равен объём детали? Ответ выразите в дм 3 .

Ответ: 4

6)На рисунке изображён график y=f′(x) производной функции f(x), определённой на интервале (− 8; 4). В какой точке отрезка [− 2; 3] функция f(x) принимает наименьшее значение?

Ответ: -2

8)В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 5 литров воды. Сколько процентов составит концентрация получившегося раствора?

Ответ: 6

9)На рисунке изображён график функции вида 𝑓(𝑥) = 𝑎𝑥 2 𝑏𝑥 𝑐. Найдите значение 𝑓(−2).

Ответ: 12

10)Стрелок стреляет по одному разу в каждую из четырёх мишеней. Вероятность попадания в мишень при каждом отдельном выстреле равна 0,9. Найдите вероятность того, что стрелок попадёт в первую мишень и не попадёт в три последние.

Ответ: 0,0009

11)Найдите наибольшее значение функции 𝑦 = 𝑥 5 − 5𝑥 3 − 20𝑥 на отрезке [−10; −1].

Ответ: 48

13)В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания — точка C1, причём CC1 — образующая цилиндра, а AC — диаметр основания. Известно, что ∠ACB=45°, AB=3√2, CC1=6. а) Докажите, что угол между прямыми AC1 и BC равен 60°. б) Найдите расстояние от точки B до прямой AC1.

Ответ: б) 1,5√6

15)15-го декабря планируется взять кредит в банке на 11 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 10-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца; — 15-го числа 10-го месяца долг составит 300 тысяч рублей; — к 15-му числу 11-го месяца кредит должен быть полностью погашен.

Ответ: 1300 тыс. рублей

16)В равнобедренном тупоугольном треугольнике ABC на продолжение боковой стороны BC опущена высота AH. Из точки H на сторону AB и основание AC опущены перпендикуляры HK и HM соответственно. а) Докажите, что отрезки AM и MK равны. б) Найдите MK, если AB=5, AC=8.

Ответ: б) 2,88

18)Максим должен был умножить двузначное число на трёхзначное число (числа с нуля начинаться не могут). Вместо этого он просто приписал трёхзначное число справа к двузначному, получив пятизначное число, которое оказалось в N раз (N – натуральное число) больше правильного результата. а) Могло ли N равняться 2? б) Могло ли N равняться 10? в) Каково наибольшее возможное значение N?

Ответ: а) да б) нет в) 9

Поделиться

2 новых тренировочных варианта пробного ЕГЭ 2022 по математике 11 класс базовый и профильный уровень с ответами, варианты составлены в формате реального ЕГЭ 2022 по математике.

Решение ященко егэ 2022 (база) вариант №7 (30 вариантов) математика

Задание 18.
Некоторые сотрудники фирмы летом 2021 года отдыхали на даче, а некоторые − на море. Все сотрудники, которые не отдыхали на море, отдыхали на даче. Выберите утверждения, которые верны при указанных условиях. 

1) Сотрудник этой фирмы, который летом 2021 года не отдыхал на даче, не отдыхал и на море. 
2) Каждый сотрудник этой фирмы отдыхал летом 2021 года или на даче, или на море, или и там, и там.
3) Если сотрудник этой фирмы летом 2021 года не отдыхал на даче, то он отдыхал на море. 
4) Если Галина летом 2021 года не отдыхала ни на даче, ни на море, то она является сотрудником этой фирмы. 

В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.

Оцените статью
ЕГЭ Live