Задание 11 ЕГЭ 2022 по математике: «Наибольшее и наименьшее значения функции»

Задание 11 ЕГЭ 2022 по математике: «Наибольшее и наименьшее значения функции» ЕГЭ

Лайфак, чтобы решать задания на производную в егэ

Давайте посмотрим на некоторые задания, которые можно решить гораздо быстрее, не прибегая к использованию алгоритмов. Лайфхаки не работают на абсолютно всех заданиях, поэтому будьте аккуратны, применяя их!

Лайфхак, которые мы рассмотрим сегодня, будет опираться на знание формата экзамена. № 11 – задание из части с кратким ответом, ответ на который мы пишем в клеточки на бланке, а чего в этих клеточках не может быть? Очевидно, что бесконечную дробь, буквы 𝑒, ln(…), log(…), 𝜋, sin𝑥, бесконечность и прочие знаки мы не сможем записать, и это очень сильно упрощает нам задачу.

Почему задания на производную решает только 40% выпускников?

Ни для кого не секрет, что профильный ЕГЭ по математике состоит из частей с кратким и развёрнутым ответом. В первой части всего 11 заданий. В том числе и интересующее нас задание № 11.

Задание № 11 проверяет, умеют ли выпускники работать с производной. По статистике его решают около 40% всех сдающих экзамен, что для первой части ЕГЭ по математике очень мало.

Проблема этого задания в том, что производную проходят только в середине 11 класса, когда уже активно идет подготовка к ЕГЭ по другим темам. Из-за этого школьники не успевают ее отработать.

Два прототипа задания № 11 егэ по математике

В этом номере есть всего два типа заданий, которые можно решить с помощью простых алгоритмов. Ученикам нужно лишь запомнить их и выучить таблицу производных.

Два прототипа

Сначала необходимо понять, что именно от нас хотят в задании — расскажу небольшой лайфхак. Многие ученики путают понятия «точка максимума / минимума» и «наибольшее / наименьшее значение». Дело в том, что точка экстремума – это x, а наибольшее или наименьшее значение – это у.

Задание 11 егэ 2022 по математике: «наибольшее и наименьшее значения функции»

Решение заданий ЕГЭ по теме: «Наибольшее и наименьшее значения функции» Задание 11 ЕГЭ 2022 по математике профильного уровня.

скачать презентацию

Для выполнения задания 11 необходимо уметь выполнять действия с функциями

Примеры заданий:

Задание №1. Найдите точку минимума функции y=x3-9x2 12.

Задание №2. Найдите наибольшее значение функции 𝑦 =𝑥3/4− 27𝑥 11 на отрезке −[8; 0].

Задание № 3. Найдите наибольшее значение функции 𝑦 = (𝑥 9) 2 ⋅ (𝑥 − 5) − 5 на отрезке [−19; −5] .

Основные понятия

Точка минимума — такая точка x0, если у неё существует окрестность, для всех точек которой выполняется неравенство f(x)>f(x0)

Минимум функции — значение функции в точке минимума x0

Точка максимума — такая точка x0 , если у неё существует окрестность, для всех точек которой выполняется неравенство f(x)<f(x0)

Максимум функции — значение функции в точке максимума x0

Точки минимума и точки максимума называются точками экстремума.
Точки, в которых производная функции равна нулю или не существует, называются критическими точками.

Экстремумы могут существовать только в критических точках. Однако, не все критические точки являются экстремумами.

Теорема (достаточный признак существования экстремума функции).

Критическая точка x0 является точкой экстремума функции f(x), если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с «плюса» на «минус», то точкой максимума, а если с «минуса» на «плюс», то точкой минимума.

Связанные страницы:

Умскул

Поиск наибольшего / наименьшего значения функции

Перейдём ко второму прототипу, в котором нужно найти наибольшее/наименьшее значение функции. Интересно, что второй прототип можно отличить даже визуально, потому что кроме самой функции вам будет дан ещё промежуток, ограничивающий функцию в двух точках [a; b].

Так как мы про эти точки ничего не знаем, их придётся дополнительно учитывать. В остальном начало этого алгоритма будет совпадать с предыдущим. Начинать всегда будем именно с точек экстремума, потом проверим, как ведёт себя функция в каждой точке экстремума, а также в начале и конце заданного промежутка, и в итоге запишем в ответ нужное значение функции.

Разбираем лайфхак на примере

Чтобы выполнить данное задание, необходимо знать таблицу производных и немного порассуждать логически. Если мы пойдём по алгоритму, нам придётся брать производную от e в степени (x-9), а производная от данной функции будет равна тому же самому. И получается, что мы никак не можем избавиться от символа, которого просто не может быть в ответе.

Или можем? Есть замечательная степень, которая абсолютно любое основание может превратить в единицу — это 0. Таким образом, мы можем избавиться от е, если представим её степень (х – 9) равной нулю. Получается х – 9 = 0, тогда х = 9.

Но единственный ли это способ избавиться от «е»? На самом деле нет, так как есть ещё один множитель – скобка. Ее можно занулить, тогда занулится и всё произведение. Получим 10 – х = 0, тогда х = 10. Но не стоит забывать, что найти нас просят наименьшее значение ФУНЦИИ, поэтому теперь подставим найденные х в исходную функцию.

При х = 9 получаем 1, а при х = 10 получаем 0. Видим, что значение 0 меньше, чем 1, а значит именно его мы запишем в ответ. Обратите внимание, что оно достигается при х = 10, поэтому критично важно учитывать как степень экспоненты, так и множитель-скобку.

В этой статье мы рассмотрели два алгоритма, с помощью которых можно решить абсолютно любое задание № 11 ЕГЭ по математике. А еще вы узнали лайфхак, как можно выполнить задание на производную в ЕГЭ, не прибегая к использованию алгоритма, и сэкономить время!

  • Учите производную
  • Пользуйтесь алгоритмами
  • Не забывайте про крутые лайфхаки, но будьте внимательны, применяя их!
Оцените статью
ЕГЭ Live